
Quantum Neural Networks - Our brain as a quantum

computer?

Maria Schuld, Ilya Sinayskiy, Francesco Petruccione

Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal
Durban, KwaZulu-Natal, 4001, South Africa and National Institute for Theoretical Physics
(NITheP), KwaZulu-Natal, 4001, South Africa

E-mail: schuld@ukzn.ac.za

Abstract. Neuroscience and quantum physics have a central feature in common: both
disciplines study objects that largely remain a mystery to scientists. While a century after
the discovery of quantum theory, physicists still struggle to interpret their quantum objects’
counterintuitive behaviour, biologists are not even close to understanding the mechanisms
underlying the remarkable performance of our brain. The research field of quantum neural
networks (QNNs) combines both ‘mysteries’ by investigating how established models of neural
networks can be formulated in the language of quantum theory. Far away from the rather
esoteric discourses of a ‘quantum brain’, QNN models first and foremost aim at developing
efficient algorithms to run on future realisations of quantum computers. QNNs thereby promise
to provide a substantial speed-up or increased memory capacity relative to classical neural
networks. However, beyond questions of powerful computing technology, a success in the yet
relatively small field of QNN research could give a first hint that our brain makes use of quantum
mechanics to master its incredible tasks. In that sense, QNN research can be seen as a subfield
of the ‘dawn’ of quantum biology which evaluates the question of how nature employs quantum
effects in macroscopic (i.e. hot and dense) environments to optimise its processes.

1. Introduction
One of the most important scientific questions yet to answer is the problem of how the ‘hardware’
of our brain leads to its functioning in terms of thoughts, memory and consciousness. Some
voices claim that an important ingredient of an explanation of ‘how the mind emerges from
matter’ is quantum mechanics. On the more populist side, the discourse seems to be fuelled
by the fascination of merging two scientific mysteries, namely the counterintuitive behaviour of
the microscopic world and the black-box our most important organ still appears to be.1 But
also more established physicists argue in favour of a brain based on quantum mechanics as a
potential avenue of solving the open problem of computation in the brain works. The most well-
known is Sir Roger Penrose who, in collaboration with the anaesthesiologist Stuart Hameroff,
located quantum computing in the microtubules or cytoskeleton of neural cells [1]. Another
approach is the quantum brain model by Ricciardi and Umezawa [2] and further developed by
Pessa and Vitiello [3] in which the states of neural networks are understood as collective modes
using the formalism of Quantum Field Theory. The nonlocal properties of both quantum waves

1 Popular science debates on a ‘quantum brain’ lead to journals of controversial scientific scope such as
QuantumNeurology.
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and consciousness gave rise to notions of a ‘quantum consciousness’ [4, 5]. However, solving the
mind-matter problem through quantum physics is highly controversial [6, 7, 8].
Another meeting point between neuroscience and quantum physics are quantum neural networks
(in short, QNNs). Conventional neural networks are simplified mathematical or computational
models of the neural setup of our brain. QNNs are then models or devices that integrate
quantum computing and neural networks as two promising paradigms of information processing
in order to improve classical neural networks. Besides their potential computational power,
QNNs contribute important arguments towards the debate on the role of quantum physics in
the brain. If it can be shown that neural computation (which is widely assumed to be the basic
mechanism of how the brain works) is dramatically improved by introducing quantum effects,
we could further investigate if on a biological level, quantum neural computing can be observed.
It turns out that QNN research feeds the arguments against quantum brain models: neural
networks, characterised by nonlinear neural activation functions, and quantum systems based
on a probabilistic description of linear operations, show very distinct mathematical structures.
However, apart from their questionable biological explanation power, QNNs constitute an
exciting research topic from a computational perspective. Increasing the performance of classical
neural networks would have a significant effect on applications of machine learning and would
extend the potential field in which future quantum computers could be useful.
This brief contribution intends to introduce into the theoretical foundations of QNNs (Section
2) and QNN research (Section 3) in order to reflect on the question if these have the potential
to serve as realistic models of the brain. It comes to the conclusion that we have to see QNNs
rather from a computational than a biological perspective, and that the challenges in merging
quantum physics and neuroscience rather point towards the fact that quantum brain models are
not that easy to derive (Section 4).

2. Information processing with neurons and quantum objects
To understand the basics of how neurons process information, we have to look at how they feed
signals into one another through synaptic connections. Neurons are tube-like cells that transmit
so called action potentials. An action potential is a localised depolarisation of the equilibrium
membrane potential of usually −70mV traveling along the neuron2. A neuron transmitting an
action potential is called ‘active’ or ‘firing’ as opposed to a ‘resting’ neuron.
Each of the approximately 1011 neurons in our brain has 1 to 104 synaptic connections to other
neurons, making up for a total number of 1014 synapses [9]. When an action potential reaches a
(chemical) synapse, neurotransmitters are released into synaptic cleft and open up ion channels
in the membrane of the subsequent or post-synaptic neuron, so that a post-synaptic potential is
created. In simple words, neurons produce signals in other neurons that depend on the synaptic
strength with which they are connected. If all these incoming signals to a neuron exceed a
certain threshold, the neuron produces an action potential and becomes active.
This synaptic activation mechanism can be translated into a simple mathematical model called
perceptron and first introduced in [10]. It is based on binary neurons proposed by [11] in the
1940s. In a perceptron setup, N input neurons x1, ..., xN with values of either 0 (resting) or 1
(active) feed into a neuron y with threshold θy, and the strength of the synaptic connections
between xi and y is simulated by a weight wiy. Neuron y is activated (represented by setting
it to 1) if the input signal from x1, ..., xN multiplied by their respective weights exceeds the

2 The resting potential of the membranes of neural cells is kept up by the relative ion concentration inside and
outside the membrane permeable through voltage-guided ion channels.
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Figure 1. (Colour online) Neural computing derived from biological synapses. Top left: A
neuron fires action potentials if the combined signals from neurons feeding into it through
synaptic connections lead to an above threshold post-synaptic signal. Top right: Synaptic
connections can be mathematically modelled by perceptrons with binary neurons x1,2,3 connected
to output neuron y through the connections weighted by w1y,2y,3y and a step or sigmoid activation
function. Bottom: In neural networks, neurons are either recurrently connected (recurrent
neural network on the left) or structured in subsequent layers (feed-forward neural network on
the right).

threshold. The mathematical formulation is the activation or updating function

y =

 1, if
N∑
i=1

wiyxi ≥ θy,

0, else.

This binary perceptron is often replaced by continuous versions, for example by choosing

xi, y ∈ [−1, 1] and y = sgm(
N∑
i=1

wiyxi + θy), where sgm denotes the sigmoid function.

A neural network is a set of interconnected neurons whose dynamics are defined by the activation
mechanism. After setting neurons to an initial value, they are successively updated in a given
sequence and the output of the neural network can be read out of the final state of the neurons.
In recurrent neural networks, all neurons take part in this process until the network states
converges to a stable point, while in feed-forward neural networks the information processing
goes through layers and the output is read out at a final set of neurons [12]. Neural networks
are consequently like computers that convert an input signal into an output signal, and their
success is based on the fact that through adjusting the weights, neural networks can learn a
input-output mapping just as our brain does.

If we want to design a quantum neural network derived from biological foundations, we need
to find a way to introduce quantum effects in the perceptron updating mechanism. What do
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we mean by quantum effects? Quantum theory is a mathematical framework used by physicists
to describe the behaviour of very small particles under isolated conditions. The physical laws
on small scales are thereby very different from Newton’s classical mechanics. Our description
of atoms, electrons or photons for example assigns a wavefunction to a particle, that can be
modelled by a vector with the notation |ψ〉 in a special vector space called Hilbert space. The
wavefunction contains information on the probability of the particle to be in a certain state
(e.g. position, momentum or energy). The central fact is that this probabilistic description
does not correspond to our lack of knowledge on the system, but derives from the fact that the
particle is in general in a so called superposition of different states, sometimes referred to as
being in ‘all states at the same time’. The interaction with a macroscopic environment such
as a measurement then picks one of these states with the given probability and ‘collapses’ the
particle superposition (which is why we could never observe quantum effects directly on our
macroscopic scales).
This remarkable property of the microscopic world can be exploited for information processing,
for example through a quantum system that encodes binary information like a computer, but
is able to ‘do calculations’ on a superposition of all possible bit strings at the same time, and
consequently retrieves a result by measuring the system. It is not easy to invent algorithms on
such a quantum computer, but since two decades a number of powerful quantum routines are
known to outperform classical computers, and many scientists think that it is only a question
of time until quantum computers will become reality. The art of developing a quantum neural
network which draws on neural computing is to use insights from quantum information theory
in order to improve the performance of neural networks. We will briefly sketch the scope and
results of QNN research before we discuss the central question of this article, namely what QNNs
can tell us about the feasibility of a quantum brain.

3. Quantum neural network research
The development of a quantum neural network first and foremost aims at improving the
computational efficiency of neural networks through the introduction of quantum effects.
Neural networks are powerful devices with important application in tasks of machine learning
[13, 14, 12], but they can be very costly in terms of computational resources. This is where the
quantum speed-up is supposed to help.
The basic idea of introducing quantum properties into classical NNs is to replace the McCulloch-
Pitts neuron x = {0, 1} by a qubit |x〉 of the two-dimensional Hilbert space H2 with basis
{|0〉 , |1〉}. The state of a network with N neurons thus becomes a quantum product state of the
2N -dimensional Hilbert space

|ψ〉 = |x1〉 ⊗ |x2〉 ⊗ . . .⊗ |xN 〉 = |x1x2 . . . xN 〉 ∈ H2N = H2 ⊗ . . .⊗H2︸ ︷︷ ︸
Ntimes

.

Apart from the ‘qubit neuron’ (or ‘quron’), proposals for QNN models vary strongly in their
proximity to the basic idea of neural networks. Some try to directly translate the activation
mechanism into quantum mechanics [15, 16], a task which is nontrivial because of the structural
differences between the mathematical formalism of quantum computing and neural computing.
In a more liberal approach, researchers introduce a hypothetical quantum evolution that
corresponds to the nonlinear function, the so called dissipative operator D [17], but they fail
to find a possibility to create such an operator. Others implement a quantum neural network
through interacting quantum dots [18], a task that requires advanced technologies in controlling
the interaction strengths, especially if the systems are scaled up from mere proof-of-principal
examples.
An important approach is also the development of a quantum associative memory (QAM) which
attempts to simulate the functioning of a neural network without considering the neuroscientific
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basics [19, 20]. In our previous research, we followed this idea and used so called stochastic
quantum walks in order to impose dynamics on an abstract quantum system that reproduces
the basic features of an associative memory [21]. Quantum walks are equivalents to classical
random walks which describe a stochastic process in which a walker jumps between nodes of a
graph with predefined probabilities. We were able to show that a specific quantum version of
these processes together with a certain construction of the underlying graph can lead the walker
from a node representing an intial firing state of a neural network to a node representing the
desired output. The quantum nature of the walk thereby led to a slight speed-up in a specific
parameter range.
Altogether, QNN research is still in its infancy and a successful QNN model based on biological
foundations is still outstanding. However, the efforts are part of the new emerging field of
quantum machine learning, and might gain more importance if one day quantum computers are
accessible for real applications.

4. Conclusion: Is the brain a quantum computer?
As mentioned above, it is difficult to combine quantum theory and neural computing. Neural
networks rely on nonlinear activation functions, which in the case of the threshold function works
as a switch to activate a neuron through an incoming signal. On the other hand, quantum theory
is a probabilistic description and formulated through linear transformations of amplitudes that
carry information on the probability of measuring a certain state. Even if we could understand
neurons as quantum objects, neural quantum computing seems to fail with this incompatibility.
As formulated in [17], we would require a dissipative quantum operator D that imitates the
threshold activation function, but up to today there are no proposals known to the authors of how
such a transformation could look like. Other ideas that translate neural networks into quantum
mechanics while preserving the biologically observed activation mechanism fail to incorporate
compatible (unitary) process of learning [15].
The difficulty in creating a powerful quantum version of neural computation supports arguments
against simple notions of our brain to be a ‘quantum computer’ (as it was previously framed in
a Nature contribution [22]). This adds to other important points made regarding the possibility
of observing quantum effects in biological systems like the brain. First, the brain is a ‘hot
and messy’ sphere of high temperatures and high particle densities. These properties destroy
quantum coherence thereby rendering quantum effects irrelevant on observable timescales.
Tegmark in fact estimated the decoherence time for collisions between the roughly 106 ions
involved in the process of generating an action potential at a membrane site to be τ = 10−20s
[8]. Since this time scale is much smaller than the 10−3s of a firing event in fast neurons, he
concludes that “the computations in the brain appear to be of a classical rather than quantum
nature,” [8, 12, italics left away]. Litt et al. add that the brain also lacks a mechanism for the
complex task of quantum error correction [23]. Second, from what we know today, information
processing in the brain is executed through the above described transmission of action potentials
along neurons and their connections [24]. To explain how the brain performs quantum computing
based on neuroscientific insights, we would have to introduce the entire (macroscopic) neuron
as a quasi-particle and its complex firing process as a quantum state. This seems to be far away
from quantum objects studied up to today.
As a conclusion, we can summarize that the challenge to express the neural updating function
within the framework of quantum theory might be taken as an additional argument against the
hypothesis that our brain is a quantum computer, adding towards the decoherence concerns put
forward by various authors. Despite this fact, QNNs provide an exciting research field focusing
on the potential of quantum computing to increase the performance of neural networks. These
attempts are not confined to approaches preserving biological features of neural computing but
can use the entire toolbox of quantum computing to develop a powerful QNN model that is
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applicable for central machine learning tasks.
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