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Abstract. We analyze the dynamics of homogeneous open quantum walks on a line for
a system with two internal degrees of freedom by analytically computing the probability
distribution of the system. These distributions are plotted numerically, allowing for the
interpretation of the dynamics of the system at any timestep. We also compute for the system’s
steady point at each point of the line on which the open quantum walk takes place.

1. Introduction

Recently, the open quantum walk was introduced in [1, 2], wherein the system undergoes a
random walk, and its internal state changes with each step. The dynamics is driven by the
coupling between the system and its associated environment. This open quantum walk may
occur over discrete or continuous time steps in a finite or infinite graph, with the continuous-
time limit investigated in [3, 4]. Previous work on open quantum walks resulted in the derivation
of a central limit theorem for its asymptotic probability distribution, which is shown to be a
normal distribution [5, 6]. Aside from showing rich dynamical behavior, possible applications
for open quantum walks have been discussed in [1]. Those possible applications are dissipative
quantum state preparation of single-and multiple-qubit gates, implementation of quantum logic
gates for single and multiple qubits, and efficient quantum transport of excitations.

A particular type of open quantum walk was studied in [7]. The open quantum walk
under consideration was a homogeneous open quantum walk on a line, with one jump
operator corresponding to one direction of motion for the system. The jump operators were
assumed to be simultaneously diagonalizable. The resulting distribution was shown to be,
for intermediate timesteps, a binomial distribution, which converges for large timesteps to a
Gaussian, distribution. The approach then allows us to determine the dynamics of the system
undergoing the open quantum walk at any instant of time.

In this paper, we extend the work done in [7] to consider systems with 2 internal degrees of
freedom undergoing homogeneous open quantum walks on the line with at least one of the jump
operators diagonalizable. We analyze the dynamics of the system undergoing the open quantum
walk, and we also derive the steady state of the system at each point of the line on which this
open quantum walk takes place.
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2. The Homogeneous Open Quantum Walk

A schematic diagram of the homogeneous open quantum walk is shown in figure (1). We
designate the Hilbert space corresponding to the position of the system undergoing the open
quantum walk as Hs = Z, which we designate as position space, and the Hilbert space
corresponding to the internal degrees of freedom of the system at each node as Hc, which
we designate as node space. The total Hilbert space corresponding to the open quantum walk is
then H = Hc ⊗Hs. If the open quantum walk occurs over discrete timesteps, then at timestep
n, the density matrix describing the system undergoing this open quantum walk is given as

ρ(n) =
M
∑

x=−M

ρx ⊗ |x〉 〈x| , (1)

where ρx is the density matrix that describes the system’s internal degrees of freedom at node
x, |x〉 is the ket in position space Hs, and 2M + 1 is the total number of nodes on which the
system can move at timestep n. We note that the density matrices ρx satisfy the condition
∑M

x=−M Tr(ρx) = 1.
In Hc, we define two bounded operators B and C that satisfy the condition

B†B + C†C = I, (2)

with this condition ensuring that probability is conserved at all timesteps n. These operators
B and C correspond to the change in the system’s internal degrees of freedom as it makes a
transition from node x to a neighboring node x±1. For these jump operators, we define a linear
mapping L on Hc as

L(ρ) = BρB† + CρC† (3)

Lifting this mapping from Hc to H = Hs ⊗Hc, and iteratively applying the resulting map, we
obtain an equation of motion for the system undergoing the open quantum walk at timestep n
and node x. In particular, the jump operators in the system’s Hilbert space H will now have
the form B ⊗ |x+ 1〉 〈x| and C ⊗ |x− 1〉 〈x|, while the mapping now has the form

M(ρ(n−1)) =

n
∑

x=−n

ρ(n)x ⊗ |x〉 〈x| , (4)

where
ρ(n)x = Bρ

(n−1)
x−1 B† + Cρ

(n−1)
x+1 C†, (5)

which is the time evolution equation for the density matrix at node x at timestep n. Also,

P [n]
x = Tr(ρ[n]x ) (6)

is the probability that node x is occupied at timestep n.
IfB is diagonalizable via a unitary transformation U , (2) can be transformed into the following

form:
B̃†B̃ + C̃†C̃ = I, (7)

where B̃ = U †BU and C̃ = U †CU . In particular, B̃ has the form

B̃ = b1 |1〉 〈1|+ b2 |2〉 〈2| , (8)

where bj are the eigenvalues of B. We note that the states |1〉 and |2〉 are internal states of the

system, which are 2 × 1 unit vectors in the node Hilbert space Hc. On the other hand, C̃ will
have the following form:
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Figure 1. A homogeneous open quantum walk on a line.

C̃ =
√

1− |b1|2(α |1〉 〈1| − β∗
|2〉 〈1|) +

√

1− |b2|2(β |1〉 〈2|+ α∗
|2〉 〈2|), (9)

where α, β are complex numbers that obey the condition |α|2 + |β|2 = 1. In general, the jump
operators for a homogeneous open quantum walk do not commute, except for the case where
both B and C are simultaneously diagonalizable, which has been covered in Ref. [7]. It is still
possible, as we demonstrate for a particular case below, the probability distributions can be
computed exactly for arbitrary timesteps n.

3. Computation of probability distributions

In this section we present two methods for computing the probability distributions for systems
undergoing open quantum walks. The first method, which uses the central limit theorem, allows
us to determine the asymptotic probability distribution over time for the system. The second
method, which makes use of Fourier transforms, gives us a brute force method for computing
the system’s probability distribution.

3.1. Central Limit Theorem for Jump Operators
Ref. [5] gives us a central limit theorem that tells us the asymptotic behavior of the probability
distribution for a system underoing an open quantum walk. In particular, for a homogeneous
open quantum walk, the theorem can be stated as follows:

Theorem (Attal et al, Ref. [5], Theorem 5.2). Consider the stationary open quantum
random walk on Z associated to the jump operators B and C. We assume that the completely
positive map L(ρ) = BρB† + CρC† admits a unique invariant state ρ∞. Let (ρn, Xn) be the
quantum trajectory process to this open quantum walk. Then Xn−nm√

n
converges in law to the

Gaussian distribution N (0, C) in <, with mean m = Tr(Bρ∞B†)− Tr(Cρ∞C†) and covariance
σ2 = Tr(Bρ∞B† + Cρ∞C†) − m2 + 2Tr(Bρ∞B†L − Cρ∞C†L) − 2mTr(ρ∞L) where L is the
solution to the equation L− L

†(L) = B†B − C†C − I.
In the theorem, (ρn, Xn) is the Markov chain with values on E(Hc)× Z, where E(Hc) is the

space of all density matrices on Hc, associated with the quantum trajectories of the mapping
M.

For intermediate timesteps, on the other hand, we can determine the dynamical behavior of
the system undergoing the open quantum walk by analytically computing for it. Also, using the
mapping given by (3), we can compute for the form of the steady state for the open quantum
walk at each node of the line by solving the system of equations specified by the following
equation:

ρ∞ = L(ρ∞) = Bρ∞B† + Cρ∞C†. (10)
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3.2. Fourier Transform Method for Computing Probability Distributions
To compute the probability distributions for the open quantum walk generated by the jump
operators B and C, we use the method of Fourier transforms and dual processes first described
in Ref. [6]. First, we compute for the following dual process:

Yn(k) = (eikLB†RB + e−ikLC†RC)
n(I), (11)

where for a given operator A acting on U , LAU := AU and RAU := UA. In (11), I is the N×N
identity matrix. This dual is defined in momentum space K, where k = {−π, π}. Once we have
determined the dual Yn(k), we then compute for the trace of the product ρ0Yn(k), where ρ0 is
the density matrix for the initial state of the system, with explicit form

ρ0 = P1|1〉〈1|+ P2|2〉〈2|+ q12|1〉〈2|+ q∗12|2〉〈1|. (12)

The trace of ρ0 is then P1 + P2 = 1. Finally, we compute for the probability distribution of
the system in position space at point x and timestep n by taking the Fourier transform of
Tr(ρ0Yn(k)) as follows:

P (n)
x =

1

2π

∫ π

−π

dk e−ikxTr(ρ0Yn(k)). (13)

3.3. Computation of the probability distribution for a particular form of jump operators
To demonstrate how we can compute for the probability distribution of a system undergoing an
open quantum walk analytically, let us consider transformed jump operators of the form

B̃ = b1(|1〉〈1| − |2〉〈2|), C̃ =
√

1− |b1|2(|1〉〈2|+ |2〉〈1|). (14)

With this form of B and C, it can easily be seen that B and C both satisfy (2), and B and C

will not commute. Let us now compute for the probability distribution P
(n)
x . Evaluating (11),

then substituting the resulting dual form and the initial state given by (12) in (13), we obtain
the following probability densities at timestep n and position x:

P (n)
x =

(

n

(n− x)/2

)

(|b1|
2)(n−x)/2(1− |b1|

2)(n+x)/2. (15)

This is a binomial distribution, which converges to a normal distribution as n → ∞. Hence, for
this very special case, we have demonstrated that it is possible to compute for the analytic form
of the probability distribution for a system undergoing a homogeneous open quantum walk at
any instant of time.

4. Numerical Analysis of the Probability Distributions of a Homogeneous Open

Quantum Walk

In general, even if B and C have been transformed into the forms given by Eqs. (8) and (9),
the resulting analytic form of the probability distribution is not as simple as that given in (15).
In fact, the resulting expression only reduces to well known simple probability distributions at
any instant of time n only for certain special cases. Thus, to properly analyze the probability
distribution, we must plot it at a given instant of time n and see how the distribution evolves
numerically, in order to obtain a physical interpretation for the system’s dynamical behavior.

The first important feature to note is that if neither b1 nor b2 are equal to either zero or 1, the
distribution converges numerically to a normal distribution with a well-defined peak for large
timesteps. This is not surprising in light of Attal et al’s central limit theorem for open quantum
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Figure 2. Probability distributions for a homogeneous open quantum walk at timestep n = 400,
with B and C given by Eqs. (8) and (9), respectively. The solid circles denote a distribution
corresponding to B̃ with eigenvalues b1 = 0.45 and b2 = 0.55, while the unshaded circles denote
a solitonic distribution corresponding to B̃ with eigenvalues b1 = 1 and b2 = 0. For both

distributions, the initial state ρ
(0)
0 ’s matrix elements are ρ11 = 0.3, ρ22 = 0.7, ρ12 = 0.33 + 0.11i

and ρ21 = ρ∗12.

walks. However, by plotting the analytic form of the distribution for any given timestep, we can
see how the distribution will evolve towards a normal distribution.

Second, we note that if b1 = 1 and b2 = 0, or vice versa, in (8), then α = 1 and β = 0, or
vice versa, in (9). We then obtain a solitonic distribution, which is an infinitely narrow peaked
distribution with constant height moving with constant speed to the left or to the right. We
illustrate this in Fig. (2), where we plot a normal distribution and a solitonic distribution, the
latter represented by the single point on the right hand side.

5. Steady States for a Homogeneous Open Quantum Walk in Hc space

We now turn to the question of determining the steady states ρ∞ for the linear mapping L in Hc

space of this homogeneous open quantum walk, and in so doing determine whether the central
limit theorem for open quantum walks holds for this case. To do so, we must solve (10), and to
simplify our task, we transform (10) by diagonalizing B, such that B and C will be transformed
into the forms B̃ and C̃ given by Eqs. (8) and (9) for the diagonal blocks of C̃, respectively.
Then (10) will have the form

ρ̃∞ = B̃ρ̃∞B̃† + C̃ρ̃∞C̃†, ρ̃∞ = Uρ∞U †. (16)

We assume that ρ̃∞ has the general form

ρ̃∞ = ρ11 |1〉 〈1|+ ρ12 |1〉 〈2|+ ρ21 |2〉 〈1|+ ρ22 |2〉 〈2| . (17)
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Substituting Eqs. (8), (9) and (17) into (16) and simplifying, we obtain a system of 4 equations
in 4 unknowns for the matrix elements ρjk of ρ̃∞:

0 = (1− |b1|
2)(|α|2 − 1)ρ̃11 + (1− |b2|

2)|β|2ρ̃22 + αβ∗
√

(1− |b1|2)(1− |b2|2)ρ̃12

+ α∗β
√

(1− |b1|2)(1− |b2|2)ρ̃21

0 = |β|2(1− |b1|
2)ρ̃11 + (1− |b2|

2)(|α|2 − 1)ρ̃22 − αβ∗
√

(1− |b1|2)(1− |b2|2)ρ̃12

− α∗β
√

(1− |b1|2)(1− |b2|2)ρ̃21

0 = −αβ(1− |b1|
2)ρ̃11 + αβ(1− |b2|

2)ρ̃22 +
[

b1b
∗
2 − 1 + α2

√

(1− |b1|2)(1− |b2|2)
]

ρ̃12

− β2
√

(1− |b1|2)(1− |b2|2)ρ̃21

0 = −α∗β∗(1− |b1|
2)ρ̃11 + α∗β∗(1− |b2|

2)ρ̃22 − (β∗)2
√

(1− |b1|2)(1− |b2|2)ρ̃12

+
[

b∗1b2 − 1 + (α∗)2
√

(1− |b1|2)(1− |b2|2)
]

ρ̃21

(18)

However, the second of these four equations is actually linearly dependent on the first, so that
at this point, we have 3 equations in 4 unknowns. In order to return the system to 4 equations
in 4 unknowns, we impose the following additional constraint, following Ref. ([1]):

Tr(ρ̃∞) = ρ11 + ρ22 = 1 (19)

Thus, solving the resulting system of linear equations gives us a unique solution for ρ̃∞:

ρ̃∞ =
(1− |b1|

2)(1− |b2|
2)

2− |b1|2 − |b2|2

(

1

1− |b1|2
|1〉 〈1|+

1

1− |b2|2
|2〉 〈2|

)

. (20)

6. Conclusion

We have shown in this work that, for a particular homogeneous open quantum walk for a
system with 2 internal degrees of freedom, with one of the jump operators diagonalizable, it is
possible to compute analytically for the probability distribution of the open quantum walk for
a given timestep n. At the same time, we have also shown numerically that such a probability
distribution will converge for large timesteps to a normal distribution with 1 peak or a solitonic
distribution if the non-diagonalizable jump operator for this open quantum walk is transformable
to a particular form given by (9). We also determined a unique steady state of the mapping L

at each node of the line for this homogeneous open quantum walk.
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