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Abstract. The emerging field of Quantum Biology centres on the possibility that biological
systems might employ nontrivial quantum effects in their day to day behaviour. This surprising
result has given rise to the investigation of such quantum effects in areas as diverse as
photosynthesis and magnetoreception. In the case of avian magnetoreception, experiment
supports the role of a radical pair mechanism in how birds sense the magnetic field. Following
from radical pair theory and using the theory of open quantum systems we have completed the
analytical derivation of the master equation in the Born-Markov approximation for the simple
case of two electrons, each interacting with an environment of N nuclear spins as well as the
external magnetic field, then placed in a boson bath and allowed to dissipate. We have then
solved the master equation and analysed the dynamics of the radical pair.

1. Introduction
It is generally well accepted that birds employ the earth’s magnetic field in their remarkable
feats of migration. The exact mechanism of this use is less well understood. Of the two main
hypotheses, one suggests that ferromagnetic crystals in the birds’ beaks align themselves in the
earth’s magnetic field and thus allow the birds to orientate themselves [1]. However, experiment
demonstrates that these crystals sense magnetic intensities that are orders of magnitude big-
ger than the weak geomagnetic field [2]. Current consensus is that birds employ another more
sensitive mechanism, a chemical compass which utilises quantum effects to ‘see’ the magnetic
field. The detail of this compass, in the form of a radical-pair mechanism, was first proposed by
Schulten et al. in 1978 [3]. The mechanism relies on the photo-activated creation of a radical
pair in a singlet spin state, which then undergoes singlet-triplet mixing to result in different
chemical signatures. This hypothesis is supported by evidence that efficient avian magnetore-
ception is light-dependent, requires an undamaged visual system [4] and is sensitive to weak
magnetic fields [8]. One of the most convincing pieces of evidence in support of the radical pair
mechanism is the experimental demonstration that oscillating radiofrequency fields cause birds
to be disoriented. It was first noted in 2004 that birds are disoriented in oscillating fields of MHz
range, most remarkably at a frequency of 1.315 MHz [5, 6]. This, being the Larmor frequency
of a free electron in a geomagnetic field, led to speculation that one of the radicals of the pair
has no hyperfine interactions. Ritz et al. went on to specify the other specific frequencies at
which birds are disoriented, although to a much lesser degree, concluding that such disorienta-
tion would be explicable by the fact that for a radical with no hyperfine interactions the Larmor
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resonance would have greater effect than for a frequency corresponding to only one of the various
possible energy-level splittings of the hyperfine interaction [7]. Recent experiments conducted on
migratory birds over seven years at Oldenburg in Germany have also demonstrated that birds’
ability to navigate effectively is compromised by anthropogenic electromagnetic radiation over
a frequency range from 50 kHz to 5MHz [9].

The work documented in this paper revisits radical pair theory through an open quantum
systems approach. Firstly we derive a master equation in the Born-Markov approximation which
describes the dynamics of the radical pair as it dissipates in a boson bath approximating the
environment. We then solve the master equation and analyse the dynamics of the radical pair.
This approach is useful in its theoretical verification of experimental parameters used in other
models of the avian compass, such as the lifetime of the radical pair and the rates at which
singlet-triplet mixing occurs [10][11]. By varying the number of nuclear spins interacting with
the radical pair we can also investigate the effects of different nuclear environments and thus
conclude something about the structure of cryptochrome, the biological molecule in which it is
thought that the radical pair reaction takes place [14].

2. Modelling the Radical Pair Mechanism
2.1. The System
The heart of the magnetic compass, the radical pair, results from the photo-excitation of an
electron to form a spatially separated but spin-correlated electron pair. The radical pair begins
in a singlet state 1√

2
(|↑↓〉 − |↓↑〉), but the hyperfine interaction of each electron with its nuclear

environment, as well as with the magnetic field, induces singlet-triplet mixing. For the purposes
of this research we will neglect the dipole-dipole and exchange interactions between the two
electrons due to sufficient spatial separation [11][12]. We also neglect the interaction of nuclear
spins as the gyromagnetic ratio is small compared to the electronic case [12].

The Hilbert space of the system is given by Hs = H(1)
e ⊗H(2)

e ⊗H(1)
n ⊗H(2)

n where He refers to
the Hilbert space of either electron and is two dimensional while Hn refers to the Hilbert space
of the nuclear spin environment and is of dimension (2j + 1) × (2j + 1). In the following we

already take into account that, for example, S
(1)
z = S

(1)
z ⊗ I(2)

e ⊗ I(1)
n ⊗ I(2)

n where Ie and In are

the identity matrices for electron and nuclei. Thus an expression such as S
(1)
+ I

(1)
− uses ordinary

matrix multiplication. The Hamiltonian for this system models the two electrons, labelled (1)
and (2), each interacting separately, and can be written as

Hs = γe(
−→
BS(1) +

−→
BS(2)) + λ

2∑
k=1

3∑
n,l=1

A
(k)
nl S

(k)
n I

(k)
l (1)

where
−→
B is the magnetic field vector and

S = (Sx, Sy, Sz) I = (Ix, Iy, Iz)

are the vectors of spin operators for electron and nuclear spin respectively and γe
−→
BS is the

Zeeman interaction with electron gyromagnetic ratio γe = −gµB, where g = 2 and µB is
the Bohr magneton. The sum runs over k to include both electrons. The first electron is
anisotropically coupled to its spin environment while the second is isotropically coupled, with
respective hyperfine coupling tensors

A(1) =

 2 0 0
0 2 0
0 0 1

 A(2) =

 1 0 0
0 1 0
0 0 1
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and hyperfine coupling constant given by λ.

Following from work done in [13] we choose as a basis for the electron spin states {|0〉,|1〉},
with |0〉 the ground state and |1〉 the excited state. From this we can express the raising and
lowering operators as

S+ = |0〉 〈1| S− = |1〉 〈0|

Sz in this basis is

Sz =
1

2
(|0〉 〈0| − |1〉 〈1|)

For the nuclear spins, j is the total angular momentum of the N spin-half nuclei, which gives
2j + 1 possible states, from m = −j, ..., j where m is the magnetic quantum number. For N
spins the basis can be taken as {|j,m〉 ,m = −j, ..., j}. In this basis the raising and lowering
operators are

I+ =
j−1∑

m=−j
A+

jm |j,m+ 1〉 〈j,m| I− =
j∑

m=−j+1

A−jm |j,m− 1〉 〈j,m|

where A±jm =
√
j(j + 1)−m(m± 1). Iz in this basis is

Iz =
j∑

m=−j
m |j,m〉 〈j,m|

We now look again at the system Hamiltonian for a single electron, and, using SxIx + SyIy =
1
2(S+I− + S−I+), rewrite it as

H
(1)
S = γeB0S

(1)
z + λ(S

(1)
+ I

(1)
− + S

(1)
− I

(1)
+ ) +

λ

2
(S(1)

z I(1)
z )

where we have taken the magnetic field as pointing along the positive z axis. Using the relevant
expressions above we arrive at a Hamiltonian that is not diagonal in the basis

{|0, j, j〉 , |1, j,−j〉 , |1, j,m〉 , |0, j,m− 1〉}

By finding eigenvalues and eigenvectors we can write the new diagonal Hamiltonian in the basis
of its eigenvectors

{|0, j, j〉 , |1, j,−j〉 ,
∣∣∣λ−jm〉 , ∣∣∣λ+

jm

〉
}

In this basis the system Hamiltonian looks like

H
(1)
S =

1

2
[(γeB0 + λj) |0, j, j〉 〈0, j, j| − (γeB0 − λj) |1, j,−j〉 〈1, j,−j|]

+
j∑

m=−j+1

[v1(j,m)
∣∣∣λ−jm〉〈λ−jm∣∣∣+ v2(j,m)

∣∣∣λ+
jm

〉〈
λ+
jm

∣∣∣] (2)

The diagonal system Hamiltonian for the second electron is found in the same way.

As the evolution of the system is happening at physiological temperatures it is natural to assume
the system is embedded in a dissipative bosonic environment [16]. This can be written as

HI =
∑
n

[gnan + ḡna
†
n]⊗ [α(S(1)

x + S(1)
z ) + α(S(2)

x + S(2)
z )] (3)

Proceedings of SAIP2014

SA Institute of Physics  ISBN: 978-0-620-65391-6 566



where a†n and an are creation and annihilation operators. The action of these operators will be
described in the discussion of the derivation of the master equation below. Typically in the the-
ory of open quantum systems one would use Sx or Sz coupling only, leading to either dissipation
or decoherence. As there is currently no evidence which is the dominant interaction we include
both here.

2.2. The Transition Operators
Following the approach suggested in [15] the jump operators which describe the transitions
between the possible levels the system can occupy are found by taking the commutators

[HS , Vk] = −ωkVk [HS , V
†
k ] = ωkV

†
k

where V = Sx + Sz follows from the interaction Hamiltonian. Transition operators Vk and

V †k for the first electron take the form

V1 =
∣∣∣λ−j,j〉 〈0, j, j| , V2 = |1, j,−j〉

〈
λ+
j,−j+1

∣∣∣ ...Vk
where k here labels the number of transition operators and |0, j, j〉, |1, j,−j〉,

∣∣∣λ−jm〉,
∣∣∣λ+

jm

〉
is

the diagonal basis of the system Hamiltonian for the first electron, as described above. Corre-
sponding transition frequencies ω1, ω2 ... ωk are expressed in terms of the magnetic field and
the hyperfine coupling constant where negative frequencies denote energy leaving the system
and vice versa. Transition operators and frequencies for the second electron are calculated in
a similar manner with the isotropy of the hyperfine interaction in this case resulting in slightly
different transition parameters.

The decoherence in the system is found by taking the commutator

[HS , V0] = 0

where the transition frequency of zero reflects the fact that there is no energy flow in or out of
the system.

2.3. The Master Equation
In the interaction picture we can rewrite the interaction Hamiltonian using the transition
operators as

HI(t) =
∑
n

[gnane
−iωnt + ḡna

†
ne

iωnt]⊗ [(
NT∑
j=1

α(V
(1)
j e−iw

T
j t + V

†(1)
j eiw

T
j t) + αV

(1)
0 )

+(
NT∑
j=1

α(V
(2)
j e−iw

T
j t + V

†(2)
j eiw

T
j t) + αV

(2)
0 )] (4)

Here the sum runs to NT which is the number of transition operators. As the number of
nuclei increase the number of transition operators also increase, for example with only a single
nucleus in the system there are only five transition operators whereas for all ten nuclei there
will be fifty.
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Figure 1. Radical pair dynamics for j = 1
2

Figure 2. Radical pair dynamics for j = 1

In the derivation of the master equation the bath correlation functions determine the rates
at which transitions happen, with the only contributions coming from〈

ana
†
m

〉
= TrB[ana

†
mρB] = δnm(n(ωn) + 1)

〈
a†nam

〉
= TrB[a†namρB] = δnmn(ωn)

where n(ωn) is the Planck distibution at a specific frequency. After applying the Born-Markov
approximations and completing the derivation the master equation can be expressed as

d

dt
ρIS =

2∑
k=1

γD[V
(k)

0 ρISV
(k)

0 − 1

2
{V (k)

0 V
(k)

0 , ρIS}] +
2∑

k=1

NT∑
j=1

γj
[
[V

(k)
j ρISV

†(k)
j − 1

2
{V †(k)

j V
(k)
j , ρIS}]

+n(ωT
j )[V

(k)
j ρISV

†(k)
j − 1

2
{V †(k)

j V
(k)
j , ρIS}] + n(ωT

j )[V
†(k)
j ρISV

(k)
j − 1

2
{V (k)

j V
†(k)
j , ρIS}]

]
(5)

where γj is the rate of spontaneous dissipation, γD the rate of decoherence and

n(ωT
j ) =

1

exp
(
h̄ωT

j

kBT

)
− 1

gives the number of thermal photons (bosons) in a mode of frequency ωT
j at a given

temperature T and kB is the Boltzmann constant. Here the sum also runs over k in order
to include both electrons. The first term describes the decoherence while the last three describe
the dissipation. The first of these dissipation terms accounts for spontaneous emission and the
last two terms account for stimulated emission and absorption processes respectively, these are
due to thermal fluctuations at a given temperature.
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3. Solving the Master Equation
3.1. Parameters
In order to investigate the dynamics of the radical pair we took the geomagnetic field to be
47µT [10]. In the relevant literature hyperfine coupling constants for organic molecules range
in value. We selected λ = 30MHz [11] for the purposes of this paper. To accurately apply the
model to biological systems we took the temperature to be 300K. To calculate the appropriate
frequency-dependent rates of dissipation we used

γj =
ω3
j

3ε0πh̄c3
|d|2 (6)

and by approximating our transitions as those of the equivalent Rydberg atom we were able
to calculate the transition dipole moment to be of the order of 1010ea0. With these parameters
we were then able to simulate the evolution of the radical pair.

3.2. Preliminary Results and Conclusions
The results for two possible variations of the radical pair mechanism can be seen above. Figure
1 demonstrates singlet-triplet mixing where each electron in the pair interacts with a single nu-
clear spin only, while Figure 2 shows singlet-triplet mixing for the electrons each interacting with
two nuclear spins, taking into account the different possible alignments of these spins. In both
instances the lifetime of the radical pair is of the order of microseconds, a surprisingly long-lived
coherence which nonetheless verifies values arrived at through various methods elsewhere in the
literature where coherence times have even been suggested to be of the order of milliseconds
[17]. The difference in our approach as compared, for example, to Gauger et al., [10] being that
instead of estimating rates from experiment we have derived our model from first principles. The
agreement of our derived lifetime with those estimated in the literature suggests the feasibility
of our open quantum approach.

Being as there are only two of the ten proposed cases reported here it is too early for any
absolute conclusions. One of the intentions of the research is to compare, for example, the
effects of half integer as opposed to integer spin for the nuclear environment. As it stands it
would appear that dissipation happens slower in the case of half integer spin, even though the
lifetimes are comparable. This would have to be verified for all ten cases. The dissipation in
the j = 1

2 case also appears smoother whereas in the j = 1 case there is an initial more rapid
decline in the singlet state. These results might suggest that the presence of additional nuclear
spins or their configuration in relation to the radical pair either enhance or destroy the coherence.

As mentioned already in the introduction to this paper Mouritsen et al. have recently
published a report gleaned from seven years of double-blind experiments that demonstrated the
disorientation of migratory birds under the influence of anthropogenic electromagnetic radiation
over a frequency range from 50 kHz to 5MHz [9]. This is important new evidence that radiation
at frequencies deemed safe can functionally disrupt complex biological organisms. The use of
quantum theory as applied to avian magnetoreception in the radical pair mechanism offers a
possible model to explain this effect and, as such, has a valuable contribution to make.
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