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Abstract. One of the best tools we have in geophysical modelling is the ability to interpolate
the horizontal geomagnetic field at the surface of the Earth. This is especially useful in
regions, such as southern Africa, where there is a sparse array of absolute magnetometers
available for geomagnetic field measurements. In terms of geomagnetic field interpolation, the
spherical elementary current systems (SECS) spatial interpolation scheme has shown to be
very successful, and the planar approximation of this method adequate for modelling at mid-
latitudes. The SECS interpolation scheme is physics based, making use of the Biot-Savart law
and equivalent ionospheric currents to interpolate measured geomagnetic field data. As with
most interpolation methods, more data points result in lower error. Therefore, we adapt the
SECS method to work with variometers. These instruments measure variations in magnetic field
and are more abundant in southern Africa. Merging the two resulting interpolated datasets, the
initial absolute geomagnetic field interpolation can be significantly improved. This improved
interpolation scheme is not only incredibly useful locally, where a sparse magnetometer array
is a challenge, but can also be applied just as effectively in other cases across the globe where
there are numerous magnetometers and variometers available.

1. Introduction

In southern Africa, we are lucky enough to have 4 geomagnetic stations which form part of
the INTERMAGNET network and measure the absolute geomagnetic field. These stations are
located in Hermanus (HER), Hartebeesthoek (HBK), Tsumeb (TSU) and Keetmanshoop (KMH)
respectively (see Figure 1). Although this is a very sparse grid, it is in fact typical and many
other regions globally have even fewer stations. Partly what makes these stations so difficult to
set-up is the cost involved with the equipment and maintenance needed to measure the baseline
geomagnetic field accurately. To get around the sparsity of measurement sites, interpolation
has to be used. Much more common worldwide are variometers, which do not measure the
baseline, but rather the change in the magnetic field. In southern Africa we have a host of
these, for example the pulsation magnetometers at Waterberg (WAT) and Sutherland (SUT)
and the magnetotelluric station at Kakamas (KMS). Including the additional information from
these denser variometers arrays can improve the geomagnetic field interpolation.

1.1. SECS Interpolation

The spherical elementary current systems (SECS) interpolation technique is a physics
based interpolation scheme that adds significant robustness when compared to other purely
mathematical interpolation schemes such as Fourier, spherical cap or spherical harmonic
interpolation schemes [1]. From Helmholtz’s theorem, any current flowing on a surface can be
broken into a curl-free part (which allows current flow in and out of surface) and a divergence-
free part (which allows current flow on surface). When considering real world ionospheric and
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Figure 1. Map of absolute magnetometers
and variometers in southern Africa. Magenta Figure 2. A simple schematic representation of the
circles represent magnetotelluric stations SECS interpolation scheme and the relevant current
that can possibly used as variometers as well. systems as described in section 1.1.

magnetospheric currents, it is the divergence-free part that is typically measured by ground-
based magnetometers [2]. Furthermore, any real system of currents can be approximated by an
equivalent current surface at some arbitrary height. Some studies have used multiple current
surfaces to separate the external contribution from the induced current contribution. These
studies result in estimations of the actual ionospheric and magnetospheric currents themselves [3—
5]. When considering only the horizontal components of the geomagnetic field, it has been shown
that a single external equivalent current system suffices [6]. In addition, SECS interpolation has
been shown to be particularly accurate given geomagnetically active days and a sparse grid,
making it ideal for a southern African context [6].

Assuming Earth-centred spherical coordinates (7,6, ¢), the divergence-free current at a point
7 on the current surface Ry, f, 6§ away from a pole at 7 is

. I 0\ . [[¢7-V x J(#)dS 0\ _
de(T') = m cot (2> €p = 47‘(’Rsu,,,f cot 5 €p- (1)

Assuming cylindrical coordinates (r = \/x2 + y2, ¢, 2)[7], with a current element of amplitude
of I at height h, the surface current density would be,
1

Jap = 5 €. (2)

There are a number of factors affecting this planar approximation including an small angle
assumption and the resolution of stations. Nevertheless, this approximation of the SECS model
has been used effectively for geomagnetic field modelling in a southern African context before
8,9]. Assuming z is downwards and a harmonic time dependence (i.e. e™* )[3], the electric field
resulting from the element would be,

o iwpol V12 + h? —

€5- 3)

47 r
The corresponding magnetic field would then be,

() ()
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Given these governing equations for a single current element at a single point in time, a grid of
elementary current elements (say n elements) set-up to cover some defined spatial extent. These
elements are collected into a vector I. Measured geomagnetic field data from magnetometers (say
m stations) is then used to constrain elementary currents, again using the governing equations.
As can be expected, m < n. These magnetometer stations are collected into a separate vector
B. To improve accuracy, as much of the Earth’s own magnetic field must be subtracted from the
measured magnetic field data to ensure that most of the contribution is from the external current
systems. Any remaining offset should largely be absorbed by the equivalent currents. A transfer
function matrix T relates the elementary currents and the measured geomagnetic field, such that
we have the matrix equation B = T - I. Since we are only interested in the horizontal field, only
the e, component of the magnetic field is used. This transfer function is only dependent on the
spatial relationship between the elementary current and the magnetometer station. The matrix
equation calculation is that performed separately for the z (N-S) and y (E-W) components of 1
and B respectively, and this process is done for each time step. More specifically,

Tz,y:ll e Tz,y:ln ]l
B;v,y:l
= (5)
Bac,y:m
L Tz,y:ml Tz,y:mn 4 L In a
where, 1o

h
Ty i = 11— ——.
i = ( m) )
Since the dimensions of T is m x n and non-square, I is calculated using the quasi-inverse 77!,
i.e. I =T7'.B. This quasi inverse 7! is obtained from singular value decomposition. Once
the vector [ is defined by the measured magnetic field, it can be used interpolate the magnetic
field to any other point of of interest, i.e. B’ = T" - I (see Figure 2). The physical consistency
and adherence to Maxwell’s equations makes the SECS interpolation method incredibly robust.

2. dSECS
Although variometers are not absolute, they can very accurately measure the change in the
magnetic field, i.e. AB = B(t;) — B(t;—1). Since the SECS method is entirely linear in time,
AB can be interpolated in the same way as B using the same method (7" is purely a spatial
constant). The only difference in this case is that I becomes AT,
B(t;) — B(ti—1) =T -1(t;) =T - I(ti—1)
=T (I(t;) — I(ti-1)) (7)
AB=T- Al

With more variometers than absolute magnetometers (magnetometers can act as variometers as
well), the confidence in AB interpolation is much higher than that for B. AB is also what is
typically used for geoelectric studies.

3. Merging SECS and dSECS
Using the greater accuracy in the interpolation of AB, we can improve the interpolation of B.
In order to do this, we consider the two resulting time series of B and AB. Let us assume B is
of length N + 1 and hence AB is of length N. Given a set of perturbations €, the two resulting
time series can be equated,

ABy = (B + €2) — (B1 +€1)

(8)
ABN = (Bn+1 + ent1) — (By + €n).
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This can then be rewritten in a matrix equation of the form AZ = 5,

N+1
€1
-1 1 0 0 0 € ABy + By — B>
0 —1 1 o 0 AB; + B, — B3
N - 9)
0 0 -1 1 ABN+BN—BN+1

Although the sparse matrix A is non-square, it has a very well behaved quasi-inverse. This
quasi-inverse is again used as before to solve for the perturbations Z, since all the components
in b are known. Each original interpolated B; is updated by its corresponding perturbation ¢;
for each time step, with the resulting interpolation now also constrained by the more accurate
interpolated AB.

4. Results
In order to validate the method an elementary current grid spanning 34.5-18.5°S and 6.5-28.0°E
was used, which is roughly 1 200km in the East-West direction and 1 700km in the North-South
direction. This grid had dimensions 13 x 18 in these respective directions, which in turn relates
to a grid spacing of roughly 100km in both directions. In preprocessing the data, the Enhanced
Magnetic Model (EMM2017) was used to subtract as much of the Earth’s magnetic field as
possible to allow the dSECS method to focus on the external contributions. Figure 3 shows the
resulting interpolated magnetic field and the interpolated change in the magnetic field over the
this same elementary current grid.

From the stations described in section 1, KMH was used as the validation point for the dSECS
method. For this validation, 4 different geomagnetic storms in 2015 were used. There were some
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Figure 3. Typical results of SECS and dSECS interpolations over southern Africa. Blue vectors
indicate the interpolated field and the red vectors indicate the measured field used to interpolate.
The green vector is measured data not included in the interpolation and used for validation.
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data gaps as a result of data availability of all the instruments, but the resulting validation set
included quiet time, sudden storm commencement, main phase and recovery phase. Figure 4
shows the resulting time series for one of these storms for the B, component. Also shown is
the SYM-H index. This is a global index of the ring current and is indicative of the state of
the geomagnetic field. For the period shown, there is a distinct sudden storm commencement
after a period of quiet time, which is followed by the main phase of the storm. This period has
a complex structure with significant fluctuations in the geomagnetic field (large |[AB|).
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Figure 4. The performance of the different interpolation schemes is shown for the B, component
of the geomagnetic field at Keetmanshoop (KMH) during a geomagnetic storm.

5. Discussion and Conclusion

From the resulting modelling and error distributions, it is evident that including the variometers
improves geomagnetic field interpolation. When considering the total error distributions (see
Figure 5), in all magnetic field components the standard deviation is significantly smaller for
the dSECS method (between 38-52% improvement). All dSECS error distributions also tend
more towards Gaussian error distributions when compared to the typical SECS method. This
suggests that there is less systematic error and more random or sampling error. For the KMH
dataset used, there is was a known issue with the decimal point rounding that would a source
of such sampling error. It is interesting to note that the B, component benefits most from the
inclusion of variometers. At midlatitudes, this component is typically associated with induction
effects which tend to be more localised. Hence the addition of more local variometers is most
likely what drives this improvement. Typically, the B, component is most affected during storm
times which may suggest the slightly less Gaussian error distribution. When considering the
total horizontal field error though, we again have a roughly Gaussian error distribution which
is significantly improved by including variometers.
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With the dSECS method validated and showing improvement, the method can be used not
only for geomagnetic field interpolation but also geoelectric field studies. Geoelectric field
studies require A B, and hence only variometers are needed. Variometers are much cheaper than
absolute magnetometers and more robust, making them feasible for large array implementations.
Ultimately, the larger and more dense the array, the greater the interpolation accuracy.
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