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Abstract. We use two AdS/CFT based energy loss models to compute the suppression, flow,
and azimuthal correlations of heavy quarks in heavy ion collisions at RHIC and LHC. The
model with a velocity independent diffusion coefficient is in good agreement with B and D
meson suppression data up to high transverse momentum. The partonic azimuthal correlations
are compared with those from perturbative QCD based simulations, Ref. [1]. When restricted
to leading order production processes, we find that the strongly coupled correlations of high
transverse momentum pairs (> 4 GeV) are broadened less efficiently than the corresponding
weak coupling based correlations, while low transverse momentum pairs (1 − 4 GeV) are
broaded with similar efficiency, but with an order of magnitude more particles ending up in this
momentum class. We thus propose heavy flavour momentum correlations as a distinguishing
observable of weakly- and strongly-coupled energy loss mechanisms.

1. Introduction
The quark gluon plasma is of great interest since it represents our first case study of the emergent
physics of the non-abelian gauge theory QCD. A key step in understanding this state of matter
is identifying its relevant coupling strength. The perturbative techniques of QCD are only
adequate in a weakly coupled plasma, with calculations for strongly coupled plasmas constrained
to methods like AdS/CFT-based approaches or Resonance Scattering [2]. Both weak and
strong coupling based approaches have had their respective successes in the past. For instance,
measurements of the nuclear modification factor of pions, RπAA, show surprisingly consistent
agreement with predicions from pQCD based models [3], while AdS/CFT based calculations
have fared strongly by predicting a global lower bound on the shear-viscosity-to-entropy ratio of
QGP-like systems of, in natural units, ηs ∼ 0.1 [4], which is in line with hydrodynamic inferences
from collider data from LHC and RHIC [5].

Both frameworks show qualitative agreement with measurements of the nuclear modification
factor of D-mesons, RDAA [3], suggesting they have attained sufficient maturity to investigate
more differential observables.

In [1], the azimuthal correlations of heavy qq̄ pairs in a weakly coupled plasma in Pb+Pb
collisions (center-of-mass energy

√
s = 2.76TeV) were studied, both for a model using

purely collisional energy loss and one additionally incorporating radiative corrections. These
weak coupling based azimuthal correlations provide a secondary indicator for the momentum
correlations of heavy quarks. We will compare these correlations with two different AdS/CFT
based energy loss models, one having a velocity-dependent diffusion coefficient [6], and the other
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having a diffusion coefficient that is independent of the heavy quark’s velocity [7]. Furthermore,
we will probe the spectrum of their possible predictions (translated back to QCD) with two
plausible [8] ’t Hooft coupling constants (λ1 = 5.5 and λ2 = 12παs ≈ 11.3 with strong coupling
αs = 0.3) where for λ1, we also equate the QCD and N = 4 super Yang-Mills (which is dual
to the AdS5 setting our calculations are performed in) temperatures, while λ2 has the QCD
temperature equated with the N =4 super Yang-Mills energy density instead.

The calculations will be performed at leading order for the same transverse momentum classes
as in [1]. Additionally, we will consider momentum correlations that take initial momentum
correlations into account. These correlations provide evidence that heavy quarks traversing a
strongly coupled plasma are more likely to stay correlated in momentum than they would if
inside a weakly coupled plasma, and we thus argue that heavy flavour momentum correlations
constitute a promising differentiator between weakly and strongly coupled plasmas.

Finally, we will compare our results with heavy flavour measurements from LHC and provide
predictions for RHIC.

2. Energy Loss Model
2.1. Overview
The following will outline our computational procedure and its background. Subsequent to
initializing the momenta of heavy quark pairs either to leading order with FONLL [9] or to next-
to-leading order with aMC@NLO [10] using Herwig++ [11] for the showering, the production
points of the heavy quarks are weighted by the Glauber binary distribution [6]. The particles
are propagated through the plasma via the energy loss mechanism described in 2.2, either until
the temperature in their local fluid cell drops below a critical threshold where hadronization
is presumed to occur, or until the maximum time the VISHNU background [5] is calculated
for has passed. If next-to-leading order initialization has been used, the heavy quarks are now
hadronized. Finally, the heavy quarks are binned pairwise according to their relative azimuthal
angle and each particle’s final three-momentum.

2.2. Langevin Energy Loss
The stochastic equation of motion for a heavy quark in the fluid’s rest frame is [12]

dpi
dt

= −µpi + FLi + F Ti (1)

where FLi and F Ti are longitudinal and transverse momentum kicks with respect to the quark’s

direction of propagation and µ is the drag loss coefficient, given by µ = π
√
λT 2/2MQ [13] where

MQ is the mass of a heavy quark in a plasma of temperature T with ’t Hooft coupling constant
λ. The correlations of momentum kicks at time t1 and t2 are given by

〈F Ti (t1)F
T
j (t2)〉 = κT (δij − ~pi~pj

|p|2
)g(t2 − t1) (2) 〈FLi (t1)F

L
j (t2)〉 = κL

pipj
|p|2

g(t2 − t1) (3)

where the function g is only known numerically [6] and with

κT = π
√
λT 3γ1/2 (4) κL = γ2κT = π

√
λT 3γ5/2 (5)

q̂ = 〈p⊥(t)2〉λ ≈ κT t/λ = γ(2πT 3
√
λ)/v (6)

where γ is the speed of the quark. It should be noted that this construction does not obey the
fluctuation-dissipation theorem [6]. The computations based on this model will be labeled D(p).

2.3. Development on energy loss model
The problem with the energy loss mechanism described in 2.2 is that, since the longitudinal

momentum fluctuations grow as γ
5
2 , our setup breaks down for high momenta, where in a
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perturbative QCD setting, Brehmstrahlung would restrict the momentum growth of the quark.
Via a novel calculation presented in [7, 14, 15], we instead consider a stationary string in AdSd
hanging into a black hole horizon and calculate s2(t, a, d), the average transverse distance squared
travelled by the string’s free endpoint, where t is the time, d the dimension of the setup, and
a parametrizes between a heavy quark for a = 0 and a light quark for a = 1. Crucially,
s2(t, a, d = 3) can be determined analytically for small string lengths, which is identical to the
asymptotically late time behavior of a string with arbitrary initial length. We thus find the
asymptotically late time behavior of a string in d dimensions by

s2(t� β, a, d) = s2small(t� β, a, d)

= (
d− 1

2
)2s2small(t� β, a, d = 3) =

(d− 1)2

8π
√
λ
β(1− a

2
) (7)

where β = T−1. At late times, the motion is diffusive, thus we can extract the diffusion coefficient

D(a, d) ∼ 1

2
s2(t� β, a, d) (8)

which in AdS5 for a heavy quark reads 2β/π
√
λ. From this, we obtain

κT = 2T 2/D = π
√
λT 2/β = π

√
λT 3 (9)

q̂ = 〈p⊥(t)2〉λ ≈ κT t/λ = (2πT 3
√
λ)/v (10)

Requiring these fluctuations to obey the fluctuation-dissipation theorem (which the construction
in 2.2 could not), we attain µ = π

√
λT 2/2E. The computations based on this model will be

labeled D=const.

3. Leading Order Correlations
3.1. 2D correlations
In Fig. 1 and Fig. 2, the d2N

dφdpT
correlations in Pb+Pb collisions

√
sNN = 2.76 TeV at 40− 50%

centrality1, are depicted for representative sections of the respective transverse momentum pT .
We observe that, for low pT , we attain very efficient broadening of the angular correlations.
For mid pT , the angular correlations are much tighter, however with greater broadening of the
momentum correlations, at least in absolute terms. For λ2 = 11.3, both angular and momentum
correlations are much weaker than for λ1 = 5.5, given the larger consequent drag coefficient of
the former.

3.2. Azimuthal correlations
In [1], at leading order, the weak coupling based computations exhibited very efficient broadening
of initial azimuthal correlations for low pT bb̄ pairs ([4− 10] GeV), which were washed out once
NLO production processes were taken into consideration.

Both for mid- and high-pT ([4−10] GeV and [10−20] GeV respectively), the initial correlations
survive to a large degree, both at leading order and at next-to-leading order, suggesting that
they may still be observable in an experimental context.

We compare our strong coupling azimuthal correlations to the weak coupling ones in Fig.
3. For [10 − 20] GeV, our correlations are significantly more peaked at their initial back-to-
back correspondence. At [4 − 10] GeV, this observation still holds for the upper bound of our

1 In Monte Carlo simulations of heavy ion collisions, the centrality quantifies the percentage of collisions that
have a smaller impact parameter than the considered collision. In experimental heavy ion collisions, an estimator
of the impact parameter has to be used, such as the charged particle multiplicity or the transverse energy of the
collision (both inversely correlated with the impact parameter). For a detailed discussion, see [16].
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λ1 = 5.5

Figure 1: d2N
dφdpT

of bb̄ pairs for pA = {2.5, 6.5} GeV in the D(p) model

λ2 = 11.3

Figure 2: d2N
dφdpT

correlations of bb̄ pairs for pA = {2.5, 6.5} GeV in the D(p) model

parameters with λ1 = 5.5, while the λ2 = 11.3 bounded result is of similar magnitude, but with
looser angular correlation than either the collisional or the collisional + Bremsstrahlung based
results. In the [1− 4] GeV range, the azimuthal correlations are almost entirely washed out for
λ2 = 11.3, while for λ1 = 5.5, they are broadened with similiar efficiency to the weak coupling
results.

Of particular interest is the difference in momentum correlations the [1 − 4] GeV range
exhibits. At about an order of magnitude, this difference promises a distinguishing observable of
weak- and strong-coupling energy loss in the medium, and should be investigated experimentally.

4. RAA and v2
We compare bottom and charm suppression predictions with data from CMS and ALICE (Fig.
4). While the agreement with CMS data for B meson suppression is comparable between the
D(p) and D=const models, the comparison with ALICE data for D mesons shows the limited
validity range of the D(p) model, whereas the D=const model remains consistent with data even
for high-pT . More fundamentally, for the D(p) model, the AdS/CFT picture naturally breaks
down at pT ∼ 100 GeV [6]. For the D=const model, there is no such natural breakdown. Only
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Figure 3: dN
dφ correlations for the specified classes.

Figure 4: (Left) Comparison with RBAA data from CMS [17] with
√
sNN = 5.02 TeV, |y| < 2.4.

(Right) Comparison with RDAA data from ALICE [18] with
√
sNN = 5.02 TeV, |y| < 0.5. The

bands range from λ = 5.5 to λ = 11.3.

Figure 5: (Left) RBAA and (Right) vB2 with
√
sNN = 200 GeV, |y| < 1.0 and 10−40% centrality

for future RHIC measurements. The bands range from λ = 5.5 to λ = 11.3.

for asymptotically large pT and T is one guaranteed that the physics is perturbative.
In Fig. 5, we show our predictions for suppression and flow of B mesons at RHIC. B mesons

are noticeably less suppressed than at the LHC, due to the substantially cooler medium in heavy
collisions at RHIC.

The bands of our predictions range from λ = 5.5 to λ = 11.3 and account for statistical
uncertainties. We note that, in particular for the high-pT range of the B meson predictions in
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Fig. 4 (left), our results’ uncertainty is significant for high-pT . This is due to the production
spectrum of heavy quarks dropping as ∼ pT

−4. The aMC@NLO framework, at the time of
writing, does not allow event generation weighted by pT . In future work, we will use POWHEG’s
weighted event generation [19] to explore high-pT phase space of our observables.

5. Conclusion & Outlook
We have compared the azimuthal correlations predicted by pQCD and AdS/CFT based
computations and found that, while the azimuthal correlations are qualitatively similar, the
momentum correlations tell a different tale. In particular, the surprise of our findings is the large
dissimilarity in low momentum correlations of the pQCD and AdS/CFT based simulations; see
Fig. 3 (left). Thus, bottom quark momentum correlations present an opportunity to distinguish
between the energy loss mechanisms of the two frameworks.

Whether this order of magnitude difference in predictions for low pT correlations of heavy
quarks exposes weaknesses in either or both of the frameworks cannot be declared until
experimental data of bottom quark momentum correlations emerge. Strong coupling based
approaches have fared better in the low momentum domain, where pQCD is restrained by
uncertainties in the running coupling.

While the agreement with CMS data for B meson suppression is comparable between the
D(p) and D=const models, the comparison with ALICE data for D mesons shows the limited
validity range of the D(p) model. In contradistinction, the D=const model remains consistent
with data even for high-pT . The RHIC data exhibits decreased suppression compared with the
LHC data, which can be understood from the lower temperatures of the medium at RHIC.

The high-pT reach of recent results from the LHC Fig. 4, particularly CMS Fig. 4 (left),
exposes the limited statistics of our simulations for high-pT . In future calculations, we will
migrate from aMC@NLO to POWHEG [19] to facilitate weighted event generation, which
mitigate the issue of limited statistics at high-pT .
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