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Abstract. A new class of Artificial Neural Networks is described incorporating a
node density function and functional weights. This network containing an infinite
number of nodes, excels in generalizing and possesses a superior extrapolation
capability.

1. Introduction
Artificial Neural Networks (ANNs) are known to be universal approximators [1, 2] and
naturally have been applied to both regression and classification problems. Usual types
are the so called feed-forward “Multi-Layered Perceptrons (MLP)” and the “Radial Basis
Function (RBF) networks”. The usefulness of ANNs is indisputable and there is a vast
literature describing applications in different fields, such as pattern recognition and data
fitting [3, 4], the solution of ordinary and partial differential equations [5, 6, 7], stock
price prediction [8], etc. ANNs can learn from existing data the underlying law (i.e. a
function) that produced the dataset. The network parameters, commonly referred to as
“weights”, are adjusted by a “training” procedure so as to represent as closely as possible
the generating function. When the data are outcomes of experimental measurements,
they are bound to be corrupted by systematic errors and random noise, a fact that
further complicates the “learning” task.

“Over-training” is a phenomenon where, although a network may fit a given dataset
accurately, it fails miserably when used for interpolation. To evaluate the performance
of a network, the dataset is usually split into the “Training-set” and the “Test-set”. The
ANN is trained using the former, and it is evaluated by examining its interpolation
capability on the latter. If the interpolation is satisfactory, the network is said to
“generalize” well, and hence it may be trusted for further use. Over-trained networks
do not generalize well. An empirical observation is that given two networks with similar
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performance on the training set, the one with the fewer parameters is likely to generalize
better.

Several techniques have been developed aiming to improve the network’s
generalization; for instance “weight decay” and “weight bounding” [9],[10], “network
pruning” [11], etc. These methods make use of an additional set, the validation set,
i.e. they partition the data into three subsets; the training, the validation and the test
subset. Training may end up in several candidate models (i.e. networks with different
weight values). Then the validation set is used to pick the best performing model, and
finally the test set will give an estimate for the size of the expected error on new data.

Another framework for modeling is through sparse supervised learning models [4, 12]
which utilize only a subset of the training data, discarding unnecessary samples based
on certain criteria. Sparse models widely used are, among others, the Lasso [13], the
Support Vector Machines (SVMs) [14] and the Relevance Vector Machines (RVMs)
[15]. Sparse learning, applies either L1 regularization, leading to penalized regression
schemes [13], or sparse priors on the model parameters under the Bayesian framework
[15, 16, 17, 18]. Quite recently, Toronto’s “Dropout” technique [19] has appeared,
stressing the importance of the subject and indicating the current keen interest of the
scientific community. This approach employs a stochastic procedure for node removal
during the training phase, reducing so the number of model parameters, in an effort to
avoid over-training.

In the present article we introduce a new type of neural network the FWNN, with
weights that depend on a continuous variable, instead of the traditional discrete index.
This network employs a small set of adjustable parameters and at the same time
presents superior generalization performance as indicated by an ample set of numerical
experiments. In addition to the interpolation capability we studied the extrapolation
properties of FWNN, found to be quite promising. Presently, and in order to illustrate
the new concept, we focus on particular forms of the involved weight and kernel functions,
which however are not restrictive by any means.

The idea of replacing the indexed parameters with continuous functions has
been previously considered in [20], in a different setting and with rather limited
implementation prospects. However since then, no further followups have been spotted
in the literature.

In section 2, we introduce the proposed neural network with continuous weight
functions, by associating it to an ordinary radial basis function network and presenting
the process of the transition to the continuum. In section 3, we report comparative
outcomes of numerical experiments conducted on both homemade datasets and on well
known, established in the literature benchmarks. Finally, in section 4, we summarize the
strengths of the method, and consider different architectural choices that may become
the subject of future research.

2. A new type of neural network
Radial basis functions (RBF) are known to be suitable for function approximation and
multivariate interpolation [21, 22]. An RBF network with K Gaussian activation nodes,



may be written as:

NRBF (x; θ) = w0 +

K∑
j=1

wjϕ(x;µj , σj) = w0 +

K∑
j=1

wj exp

(
−
|x− µj |2

2σ2
j

)
(1)

where x,µj ∈ Rn and θ = {wj ,µj , σj}Kj=1 denotes collectively the network parameters
to be determined via the training procedure. The total number of adjustable parameters
is given by the expression

NRB
var = K(2 + n) + 1 (2)

which grows linearly with the number of network nodes.
Consider a dataset S = {x(l), f (l)}, where f (l) is the desired output for the

corresponding input x(l), and let T ⊂ S be a subset of S. The interpolating RBF
network is then determined by minimizing the mean squared deviation over T :

E[T ](θ)
def
=

1

#T

∑
x(l),f (l)∈T

(
NRBF (x

(l); θ)− f (l)
)2

(3)

Let θ̂ = {ŵj , µ̂j , σ̂j}Kj=1 be the minimizer of E[T ](θ), i.e.

θ̂ = argmin
θ

{E[T ](θ)} . (4)

The network’s generalization performance is measured by the mean squared deviation,
E[S−T ](θ̂), over the relative complement set S − T . In the neural network literature, T
is usually referred to as the “training” set, while S − T as the “test” set. A well studied
issue is the proper choice for K, the number of nodes.

The training “error” E[T ](θ̂), is a monotonically decreasing function of K, while the

test “error” E[S−T ](θ̂), is not. Hence we may encounter a situation where adding nodes,
in an effort to reduce the training error, will result to increasing the test error, spoiling
therefore the network’s generalization ability. This is what is called “over-fitting” or
”over-training”, which is clearly undesirable. An analysis of this phenomenon, coined
under the name “bias-variance dillema” may be found in [23]. Over-fitting is a serious
problem and considerable research effort has been invested to find ways to deter it,
leading to the development of several techniques such as model selection, cross-validation,
early stopping, weight decay, and weight pruning [23, 24, 4, 12].

2.1. Functionally Weighted Neural Network (FWNN)
We propose a new type of neural network by considering infinite number of hidden nodes.
This is facilitated by introducing a node density function ρ(s) = 1

1−s2
of a continuous

variable s ∈ [−1, 1] with diverging integral
∫ 1
−1 ρ(s)ds → ∞. We define the “Functionally

Weighted Neural Network” in correspondence to (1) as:

NFW (x; θ) =

∫ 1

−1

ds

1− s2
w̃(s) exp

(
−|x− µ(s)|2

2σ2(s)

)
, (5)



by applying the following transitions:

wj −→ w̃(s), µj −→ µ(s), σj −→ σ(s),

K∑
j=1

−→
∫ 1

−1

ds

1− s2
(6)

In order to use the Gauss–Chebyshev quadrature, we reset w̃(s) =
√
1− s2w(s) and the

network becomes:

NFW (x; θ) =

∫ 1

−1

ds√
1− s2

w(s) exp

(
−|x− µ(s)|2

2σ2(s)

)
(7)

The weight model-functions w(s),µ(s) and σ(s) are parametrized and these parameters
are collectively denoted by θ. We examined polynomial forms, i.e:

w(s) =

Lw∑
j=0

wjs
j , µ(s) =

Lµ∑
j=0

µjs
j , σ(s) =

Lσ∑
j=0

σjs
j (8)

Note that µj ∀j = 0, · · · , Lµ and µ(s) are vectors in Rn. Therefore, the set of adjustable
parameters becomes:

θ = {{wj}Lw
j=0, {µij}

n, Lµ

i=1,j=0, {σj}Lσ
j=0} (9)

with a total parameter number given by:

NFW
var = (1 + Lw) + n(Lµ + 1) + (Lσ + 1) = Lw + nLµ + Lσ + n+ 2 (10)

The mean squared deviation corresponding to Eq. (3) is given by:

E[T ](θ)
def
=

1

#T

∑
x(l),f (l)∈T

(
NFW (x(l); θ)− f (l)

)2
(11)

The above quantity serves as the objective function for the optimization procedure. Since
E[T ](θ) is continuously differentiable, Newton or Quasi-Newton methods are appropriate.
Also, since such objectives are expected to possess a multitude of local minima, a global
procedure is necessary as usual [25].

2.2. Optimization strategy
Estimating the model parameters is accomplished by minimizing the mean squared error
E[T ](θ). Since this objective is multimodal, a global optimization technique known
as ”multistart” has been employed. This is a two-phase method, consisting of an
exploratory global phase and a subsequent local minimum-seeking phase.

In our case, the search during the local phase is performed via a Quasi-Newton
approach with the BFGS update [26]. Since the network is expressed in a closed form,
second derivatives may also be computed if a Newton method is to be preferred instead.

In Multistart, a point θ is sampled uniformly from within the feasible region, θ ∈ S,
and subsequently a local search L, is started from it leading to a local minimum θ̂ = L(θ).
If θ̂ is a minimum found for the first time, it is stored, otherwise, it is rejected. The
cycle goes on until a stopping rule [27] instructs termination.



3. Experimental results
We have performed a series of numerical experiments in order to test the performance
of FWNN, and compare it to that of its predecessors, namely the sigmoid MLP and
Gaussian RBF networks

Both ”homemade”, as well as established benchmarks from the literature, have been
employed. The homemade datasets were constructed by evaluating known functions
at a number of selected points. Each set is divided into a training set and a test set.
The training sets have been further manipulated by adding noise to the target values,
in order to simulate the effect of “corruption” due to measurement errors, while the
test sets have been left “clean”, i.e. without any noise addition. The training of the
FWNN is performed simply by minimizing the mean squared deviation given by Eq.(11),
while for the MLP and RBF networks we minimize the corresponding “error” given in
Eq.(3) with the addition of a penalty term, to facilitate the necessary “weight decay”
regularization. Without regularization the MLP and RBF networks are susceptible to
over-training. Since the mission of the network is to filter out the noise and reveal the
underlying generating function, we have the luxury, for the homemade datasets, to train
using noise-corrupted data, and evaluate the test error over clean data.

In the experiments, 10-fold cross-validation was adopted for the training. To quantify
and evaluate network performance, the “Normalized Mean Squared Error” (NMSE) over
the test set S − T , was used, namely:

NMSE =

∑
x(l),f (l)∈S−T

(
NRBF (x

(l); θ̂)− f (l)
)2

∑
x(l),f (l)∈S−T

(
f (l)
)2 × 100 (12)

Note that the above metric is proper for comparisons, being almost insensitive to data
scaling.

3.1. Experiments using artificial data
We conducted experiments with one- and two-dimensional data. Four functions were
employed in one dimension and three in two dimensions. Graphical representations may
be found in figures 1(a-d) and 2(a-c) correspondingly.

3.1.1. One-dimensional experiments For each function f(x), an interval [a, b] was
chosen for the range of x values as shown in figures 1(a-d). The training set T , contains
L = 100 equidistant points, determined by:

xi = a+ (i− 1)
b− a

L− 1
, ∀i = 1, 2, · · · , L (13)

The associated target values were then calculated as:

fi = f(xi) + ηi

with ηi being white Gaussian noise. Three levels of Signal-to-Noise-Ratio (SNR) were
considered: no noise (0 dB), medium (−5 dB) and high noise (−10 dB). Similarly the
test set was created by picking L = 1000 equidistant points using eq. (13). No noise
was added to the corresponding target values.
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Figure 1: Generating functions used for creating the 1d datasets. In each case 100
training and 1000 testing points were used.

3.1.2. Two-dimensional experiments For each function f(x1, x2), intervals [a1, b1] ⊗
[a2, b2] were chosen for the range of x1 ⊗ x2 as shown in figures 2(a-c). For the training
set, uniform grids of 15 points in each direction were used, resulting to a total of 225
training points. Again, we have added noise at three levels to the target values. Finally,
for the test set, uniform grids of 100 points in each direction were used, resulting to a
total of 10000 testing points (without any noise).

3.1.3. Procedural details FWNN, MLP and RBF networks have been investigated using
the same datasets. For each noise level, 50 independent runs were executed and the
corresponding mean NMSE value and its standard deviation are reported for both the
training and the test sets.

For the FWNN we used throughout the following values: Lw = 5, Lµ = 1 and
Lσ = 1, i.e. a fifth order polynomial for w(s) and first order polynomials for µ(s)
and σ(s), corresponding to a total of 2n+8 parameters. For the case of MLP and RBF
networks, four architectures, differing in the number of nodes, were used. In particular
the instances of K = 5, 10, 20 and 30 nodes have been investigated, corresponding to
K(n+ 2) + 1 parameters.
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Figure 2: Generating functions used for creating the 2d datasets. In each case 225
training and 10000 testing points were used.

In Table 1, the results for the mean NMSE and its standard deviation, estimated
over fifty independent runs, are laid out for the 1d-examples. Accordingly, the results
for the 2d-examples are listed in Table 2. All networks perform similarly for the 1d case,
however FWNN has a clear edge in the case of highly corrupted data. This advantage
becomes even more evident in the 2d case, where FWNN employs only 12 parameters
to complete the task, yielding at the same time a superior level of generalization.

3.2. Extrapolation
FWNN is evaluated as trustworthy as far as interpolation is concerned. It would be
quite interesting to explore its extrapolation capability as well. Although this was not
the main goal of the present article, we were tempted to examine a few one-dimensional
cases to obtain an indication of how its extrapolation capability compares to that of the
traditional MLP and RBF networks.

We describe briefly the methodology used for the evaluation of the extrapolation
performance. We construct a grid of 150 equidistant points. The first 100 points are
used for training the networks. The remaining 50 points, x1, x2, · · · , x50, are used for
evaluating the extrapolation quality. Three such datasets were used as depicted in



Network without noise medium noise high noise
Architecture train test train test train test

dataset 1(a)
FWNN (10 param.) 0.00± 0.00 0.00± 0.00 5.57± 0.81 0.89± 0.58 16.95± 1.01 1.47± 0.59

NN5 MLP 0.00± 0.00 0.00± 0.00 5.98± 0.92 0.86± 0.45 15.88± 2.54 2.59± 0.83

(16 param.) RBF 0.15± 0.11 0.12± 0.08 6.45± 0.92 0.95± 0.54 17.56± 2.70 3.46± 2.33

NN10 MLP 0.00± 0.00 0.00± 0.00 6.46± 0.79 0.93± 0.39 15.88± 3.67 2.45± 1.27

(31 param.) RBF 0.00± 0.00 0.00± 0.00 6.01± 1.11 1.71± 1.51 13.87± 1.86 4.19± 1.30

NN20 MLP 0.00± 0.00 0.00± 0.00 5.66± 0.65 1.46± 1.19 15.67± 1.53 2.61± 0.83

(61 param.) RBF 0.00± 0.00 0.00± 0.00 5.13± 0.98 1.80± 1.72 11.70± 2.89 8.29± 6.24

NN30 MLP 0.00± 0.00 0.00± 0.00 5.79± 1.47 1.75± 1.22 14.25± 2.66 4.46± 2.78

(91 param.) RBF 0.00± 0.00 0.00± 0.00 5.67± 1.10 1.29± 0.68 16.27± 3.17 2.90± 1.11

dataset 1(b)
FWNN (10 param.) 0.00± 0.00 0.00± 0.00 12.53± 1.61 2.07± 1.25 25.94± 3.67 4.23± 1.64

NN5 MLP 0.00± 0.00 0.00± 0.00 12.40± 1.67 2.50± 0.98 28.04± 7.16 5.49± 3.37

(16 param.) RBF 0.18± 0.11 0.27± 0.17 12.59± 2.30 2.60± 1.21 24.19± 3.48 5.40± 2.30

NN10 MLP 0.00± 0.00 0.00± 0.00 12.37± 1.67 2.13± 1.17 25.00± 2.57 4.40± 1.22

(31 param.) RBF 0.00± 0.00 0.00± 0.00 10.84± 3.04 2.69± 1.38 25.32± 4.22 7.86± 4.55

NN20 MLP 0.00± 0.00 0.00± 0.00 11.49± 0.91 3.19± 1.46 26.48± 4.57 6.74± 2.67

(61 param.) RBF 0.00± 0.00 0.00± 0.00 7.80± 1.69 5.99± 1.65 24.30± 3.83 6.73± 2.44

NN30 MLP 0.00± 0.00 0.00± 0.00 11.05± 2.06 5.66± 2.87 23.80± 3.75 10.88± 5.15

(91 param.) RBF 0.00± 0.00 0.00± 0.00 9.29± 2.39 5.34± 2.28 21.96± 3.98 8.85± 3.49

dataset 1(c)
FWNN (10 param.) 0.00± 0.00 0.00± 0.00 32.52± 3.56 3.52± 2.09 54.75± 2.84 11.11± 3.51

NN5 MLP 0.00± 0.00 0.00± 0.00 33.20± 5.42 7.50± 3.05 57.74± 7.01 15.20± 6.71

(16 param.) RBF 0.08± 0.06 0.10± 0.10 32.40± 3.75 6.72± 1.12 50.93± 4.72 15.60± 11.58

NN10 MLP 0.00± 0.00 0.00± 0.00 32.85± 4.65 5.55± 3.60 55.08± 7.36 16.02± 8.98

(31 param.) RBF 0.00± 0.00 0.00± 0.00 26.58± 4.53 9.59± 3.78 55.41± 6.89 16.13± 9.00

NN20 MLP 0.00± 0.00 0.00± 0.00 29.74± 5.84 9.88± 6.02 53.98± 8.19 16.37± 8.53

(61 param.) RBF 0.00± 0.00 0.00± 0.00 21.97± 2.60 17.66± 7.50 51.80± 6.66 25.50± 14.95

NN30 MLP 0.00± 0.00 0.00± 0.00 27.13± 4.94 13.96± 10.68 48.00± 6.39 28.45± 16.78

(91 param.) RBF 0.00± 0.00 0.00± 0.00 15.54± 2.19 24.98± 7.40 47.76± 6.39 22.27± 15.76

dataset 1(d)
FWNN (10 param.) 0.00± 0.00 0.00± 0.00 7.92± 1.59 2.77± 0.93 15.31± 2.54 6.80± 0.53

NN5 MLP 95.08± 5.23 95.12± 5.23 99.03± 3.38 99.10± 4.29 98.55± 1.66 100.02± 1.76

(16 param.) RBF 60.50± 12.49 59.22± 13.19 61.32± 15.14 57.54± 16.47 56.35± 9.84 52.69± 11.09

NN10 MLP 0.05± 0.05 0.05± 0.02 7.21± 0.97 3.83± 1.94 17.33± 4.21 9.94± 6.02

(31 param.) RBF 0.51± 1.58 0.32± 0.99 13.22± 6.95 7.46± 5.15 19.82± 5.31 11.76± 5.54

NN20 MLP 0.00± 0.00 0.00± 0.00 7.06± 1.37 4.04± 1.35 16.10± 2.98 8.50± 2.80

(61 param.) RBF 0.00± 0.00 0.00± 0.00 8.60± 1.92 5.40± 1.82 18.96± 8.45 11.22± 11.19

NN30 MLP 0.00± 0.00 0.00± 0.00 5.65± 1.31 4.66± 2.15 15.16± 3.14 12.15± 6.11

(91 param.) RBF 0.00± 0.00 0.00± 0.00 7.22± 2.00 3.29± 0.61 14.58± 3.31 9.08± 3.15

Table 1: NMSE mean and std comparison, for the 1d datasets related to figures 1(a-d),
calculated over 50 independent experiments.



Network without noise medium noise high noise
Architecture train test train test train test

dataset 2(a)
FWNN (12 param.) 0.00± 0.00 0.00± 0.00 46.59± 3.04 2.89± 0.83 71.73± 2.08 4.66± 2.19

NN5 MLP 4.30± 0.24 3.82± 0.26 51.97± 3.94 10.57± 2.00 74.88± 3.88 20.43± 11.11

(21 param.) RBF 0.00± 0.00 0.00± 0.00 48.63± 2.66 3.36± 1.16 71.68± 2.50 7.42± 3.14

NN10 MLP 0.11± 0.00 0.09± 0.00 49.82± 3.41 8.08± 1.60 73.13± 4.26 15.83± 5.00

(41 param.) RBF 0.00± 0.00 0.00± 0.00 47.07± 2.52 5.37± 2.05 71.27± 2.76 9.92± 5.31

NN20 MLP 0.02± 0.00 0.02± 0.00 48.72± 3.23 7.43± 1.92 74.71± 3.35 16.65± 3.97

(81 param.) RBF 0.00± 0.00 0.00± 0.00 45.33± 3.21 6.27± 2.41 68.74± 2.99 13.25± 5.96

NN30 MLP 0.02± 0.00 0.01± 0.00 45.98± 3.10 7.11± 1.66 71.73± 5.28 14.84± 3.78

(121 param.) RBF 0.00± 0.00 0.00± 0.00 46.19± 4.18 6.79± 3.26 69.39± 2.93 12.11± 6.35

dataset 2(b)
FWNN (12 param.) 0.00± 0.00 0.00± 0.00 51.23± 4.69 5.14± 0.71 73.91± 4.35 9.53± 2.59

NN5 MLP 0.19± 0.05 0.17± 0.05 51.16± 0.66 5.42± 2.14 74.34± 8.98 19.27± 26.57

(21 param.) RBF 3.19± 1.69 2.90± 1.58 51.75± 3.94 8.79± 4.61 72.21± 2.67 15.11± 3.49

NN10 MLP 0.01± 0.01 0.01± 0.00 50.50± 2.93 6.60± 2.63 70.33± 2.87 12.88± 6.68

(41 param.) RBF 0.03± 0.01 0.03± 0.01 47.61± 2.46 6.15± 0.76 69.41± 2.66 13.37± 5.14

NN20 MLP 0.01± 0.00 0.00± 0.00 49.82± 2.80 7.17± 2.62 71.81± 2.80 11.03± 2.81

(81 param.) RBF 0.00± 0.00 0.00± 0.00 45.87± 2.77 11.12± 3.61 68.07± 2.53 16.04± 4.35

NN30 MLP 0.01± 0.00 0.00± 0.00 48.64± 2.13 6.09± 2.09 70.67± 2.81 11.57± 4.04

(121 param.) RBF 0.00± 0.00 0.00± 0.00 45.45± 2.83 11.05± 3.32 66.68± 3.76 24.91± 8.30

dataset 2(c)
FWNN (12 param.) 22.35± 1.42 20.95± 1.18 64.43± 2.90 26.76± 2.05 84.27± 2.85 63.93± 18.58

NN5 MLP 96.44± 2.32 96.32± 2.60 96.95± 1.80 96.72± 1.79 98.51± 1.86 98.23± 1.72

(21 param.) RBF 65.32± 4.34 63.69± 4.42 83.19± 2.17 66.98± 4.11 89.61± 2.75 72.10± 3.48

NN10 MLP 87.89± 9.93 87.26± 10.36 98.44± 1.34 97.82± 1.50 97.68± 2.46 98.70± 2.15

(41 param.) RBF 62.23± 5.85 60.59± 5.88) 78.88± 2.52 67.88± 2.89) 85.54± 3.77 81.04± 11.50

NN20 MLP 89.16± 9.73 88.85± 10.03 97.17± 2.84 96.86± 2.74 97.00± 3.22 98.43± 1.63

(81 param.) RBF 47.15± 3.15 45.25± 3.07 69.85± 4.77 67.12± 10.16 79.51± 6.39 94.86± 13.43

NN30 MLP 71.89± 2.69 70.90± 2.88 95.58± 3.54 99.46± 3.69 94.79± 2.87 91.89± 4.07

(121 param.) RBF 47.15± 3.15 40.07± 2.22 64.67± 4.46 68.29± 4.51 74.41± 5.84 111.65± 20.54

Table 2: NMSE mean and std comparison, for the 2d datasets related to figures 2(a-c),
calculated over 50 independent experiments.

Figure 3.
Let f(x) and N(x) denote the generating function and the corresponding trained

network; then we may consider as a measure for the network’s extrapolation capability,
the relative deviation ri at point xi given by:

ri ≡
|f(xi)−N(xi)|
max{1, |f(xi)|}

(14)

Let J be the maximum number of consecutive points xi starting from x1 and satisfying
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Figure 3: The 3 datasets were created using three first generating functions shown
in Fig. 1. They contain 150 equidistant points used for evaluating the extrapolation
capabilities of the networks. The training sets (continuous lines) contain 100 points and
the extrapolation test sets (dotted lines) 50 points.

Network Deviation bound d
Architecture 0.05 0.10 0.15 0.20 0.25

dataset of Fig. 1a
FWNN 25± 1 38± 2 50± 0 50± 0 50± 0

MLP 10 nodes 15± 2 25± 3 31± 4 34± 5 50± 0
RBF 10 nodes 15± 2 19± 2 22± 3 27± 5 29± 4

dataset of Fig. 1b
FWNN 24± 3 25± 3 35± 2 37± 2 38± 2

MLP 10 nodes 12± 2 14± 2 15± 3 16± 1 16± 1
RBF 10 nodes 14± 2 16± 2 17± 2 18± 1 19± 1

dataset of Fig. 1c
FWNN 18± 1 20± 1 21± 1 21± 1 21± 1

MLP 10 nodes 6± 2 8± 1 9± 1 10± 1 11± 1
RBF 10 nodes 11± 1 13± 2 14± 2 15± 1 16± 1

Table 3: Comparison of the extrapolation index J , for the 3 datasets.

ri < d, where d ∈ [0, 0.25], is a bound for the relative deviation. Namely J is determined
so that:

ri < d, ∀ i ≤ J and rJ+1 > d

Given a value for d, the best network for extrapolation is the one corresponding to the
highest J . We list our findings for d = 0.05, 0.10, 0.15, 0.20, 0.25 in Table 3. The mean
values and the standard deviations of the J-index, have resulted from the conduction
of 50 independent experiments. In Figs. 4(a-c) we compare the relative deviations
ri, ∀i = 1, · · · , 50, of the FWNN, MLP and RBF networks, for three quoted datasets.
In all cases the proposed FWNN, displays superior extrapolation performance.
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Figure 4: FWNN, MLP and RBF relative-deviations ri, defined in eq. (14), evaluated
at 50 equidistant points in the extrapolation domain, for the quoted datasets.

4. Discussion and Conclusions
In this study we have proposed a new type of neural network, the FWNN, in which
all of its parameters are functions of a continuous variable and not of a discrete index.
This maybe interpreted as a neural network with an infinite number of hidden nodes
and significantly restricted number of model parameters. In the conducted experiments
on a suite of benchmark datasets, FWNN achieved superior generalization performance
compared to its peers, namely the conventional MLP and RBF networks. In addition,
FWNN is robust and effective even on difficult problems.

The FWNN has interesting properties. The important issue of generalization is be-
ing served superbly. The number of necessary parameters is rather limited, resisting
so over-training. The positions of the Gaussian centers are determined by the arc



µ(s), ∀s ∈ [−1, 1] and the corresponding spherical spreads by σ(s). In the present
article we have used linear forms, hence the arc is a straight line segment joining the two
end points µ(−1) and µ(+1) in Rn. The spreads are linearly increasing or decreasing
with s, depending on the sign of σ1. Although this seems to be a severe constraint, it
has not degraded the network’s performance. This may be understood noting that the
infinite number of nodes, renders the approximation of any function feasible, while the
existence of the constraint, deters over-training by substantially restricting the number
of adjustable parameters. If in some cases the linear model for µ(s) or σ(s) imposes an
overly strict constraint, it can be replaced by a more flexible quadratic, or cubic model,
at the expense of some extra parameters. The Gaussian centers will then be lying on a
parabolic, or a cubic arc correspondingly and the spreads will exhibit a higher level of
adaptivity.
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