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Abstract. This contribution reports recent investigations on low-energy scaling properties
of three-body systems, by considering elastic s−wave collisions of a particle in a bound-state
formed by the remaining two-body system. First, some previous results for the case of the
halo nucleus 20C will be revised, for the neutron−19C scattering properties near the critical
condition for the occurrence of an excited bound state in 20C, within a neutron−neutron−18C
configuration. In our approach, we consider the Faddeev formalism with renormalized zero-range
two-body interactions. Next, by considering the actual possibilities for verification of low-energy
scaling properties in cold-atom laboratories, the approach is extended to atomic strongly-mass-
imbalanced three-body systems, with two identical heavy particles and a light one. In this case,
we consider that the heavy particle is being scattered by the light-heavy weakly-bound dimer.
Our preliminary results for scattering observable are evidencing the universal scaling features.

1. Introduction
First shown by Efimov [1] for the case that we have three-identical particles in the unitary
limit (more specifically, when the absolute value of the two-body scattering length |a| becomes
infinity), a discrete geometrical scaling emerges in the corresponding bound-state energy
spectrum, which has an infinite number of three-body levels. Considered as a quantum
mechanics pathology in the beginning [2], the Efimov effect was demonstrated in [3] to arise
from essentially the same singularity structure of the kernel of the scattering equation, which
is also responsible for the Thomas collapse [4] of the three-body ground state when the two-
body range r0 is reduced to zero. As shown in Ref. [3], the trace of the kernel will diverge as
ln(|a|/r0), allowing the Efimov and Thomas effects to be described in a unified way. The Efimov
effect has been discussed occasionally along the years in the nuclear and atomic-molecular
physics context [5–13] as related to some universal aspects of three-body quantum systems.
The experimental observation of this effect in different ultracold laboratories [14–18], which
were possible in view of the quantum-mechanical control of the two-body interactions provided
by Feshbach resonance mechanisms [19], attracted lot of new theoretical and experimental
investigations on low-energy quantum few-body systems. Also, the existence of the long-standing
prediction of an excited Efimov state in the helium trimer [9] was reported recently in Ref. [20].
As a summary on the research activity in this topic, in atomic and nuclear physics, we should



mention as relevant some previous reviews, as Refs. [21–24]. In particular, for more recent ones,
we can mention Ref. [25] when considering universal aspects in light halo nuclei; and Refs. [26,27]
for the case of ultracold quantum gases. For a simplified pedagogical description of the Efimov
effect, we can suggest Ref. [28], where this effect is shown to be a manifestation of a well-known
quantum mechanics anomaly [29].

The investigations of Efimov related effects in the scattering region is quite appealing in view
of recent interest in three-body systems α − α − β with non-identical masses, mα 6= mβ. In
nuclear physics, the actual interest goes to weakly-bound halo-nuclei systems, with two neutrons
(n) in the halo and a core (c), where one can consider the scattering of a neutron by the n− c
weakly-bound sub-system. With increasing possibilities to be studied experimentally, we have
ultra-cold atomic systems where one heavy atom is colliding with low-energy to a weakly-bound
dimer formed by the remaining two particles.

Before examining the scattering region, it is first relevant to remind that in the unitary
limit, it was demonstrated that two levels of the three-body Efimov spectrum are related by
an exponential scaling factor given by exp (2π/s0), where s0 is a constant that varies according
to the mass-ratio mα/mβ [23]. In the case of identical-mass system, we have the maximum
energy-ratio predicted to be ∼ 515, such that it will be quite difficult to be experimentally
verified in laboratory, due to the large splitting of the energy levels. However, one can easily
identify from the mass-dependence of the discrete scaling factor that optimal situations, better
than the equal-mass cases detected for example in [16], can occur for mass-imbalanced systems
with mα >> mβ, when the level splitting could be more easily experimentally identified. For
instance, in case of mα = 100mβ, the ratio between consecutive levels of the bound-state energy
spectrum is given by exp (2π/s0) ∼ 4.7. Therefore, the actual experimental investigation are
more promising in this direction, by considering the atom-molecule collision with two kind of
atomic species [18, 30, 31]. By following this line of investigation in cold-atom experiments, we
have the Heidelberg group studying the extreme mass-imbalance atomic mixtures composed by
Caesium and Lithium atomic species [27].

With the actual possibilities to manipulate Lithium(Li)-Caesium(Cs) collisions [32], as well as
considering that LiCs molecules can be generated in ultracold experiments [33], we understand
that more favorable conditions are accessible by now to probe the rich Efimov physics in cold-
atom laboratories by investigating the low-energy collision of a Cs atom in a weakly-bound LiCs
molecule. In a more general perspective, by also including other possible atomic species, we can
consider the scattering of an atomic specie α in a weakly-bound α− β system, for mα >> mβ.
For that, in our following theoretical approach we assume that the two-body interactions are such
that there is no interaction between the two heavy particles. Further, by controlling the strength
of the α− β binding in laboratory through Feshbach resonance mechanism, we understand that
appropriate conditions can be created for atom-molecule collisions at very low energies.

Within our approach to identify the scaling behavior of scattering observables for three-body
systems near the unitary limit, let us recall some recent discussion related to the k cot δR0 pole
behavior in the weakly bound three-body nuclear physics case of carbon-20 (20C), within the
three-body neutron-neutron−18C model, where the subsystem neutron−18C is bound. In this
case k is the on-energy shell momentum (incoming and final), with δR0 being the real part
of the s−wave phase shift. This case, with two light particles and a heavy one, was shown
to resemble the well-known equal-mass neutron-deuteron case, which was studied about forty
years ago [34–36]. In contrast with these studies, when considering the present experimental
possibilities in cold-atom laboratories, we can verify that the limit of two-heavy and one light
particle is quite more interesting to be explored near the unitary limit. As in this limit, for
the case mα >> mβ, we can identify several bound-state poles for the three-body spectrum
with levels close together, in correspondence, a sequence of poles is expected to appear in the
scattering observable k cot δR0 for low-energy collisions of the heavy particle in the α− β bound



sub-system, which can be identified by the corresponding minima in the cross sections.
In the next we have two sections reporting results for scattering observables in mass-

asymmetric cases. Section 2 is concentrated in presenting some results and analysis related
do the halo-nucleus 20C, with section 3 having its focus in a more general mass-imbalanced
atomic system with two heavy and one light particle. Section 4 gives some concluding remarks.

2. Universal properties in Neutron−19C scattering
The low-energy properties of the elastic s−wave scattering for the n−19C near the critical
condition for the occurrence of an excited Efimov state in n−n−18C was studied in Refs. [37,38],
by considering renormalized zero-range as well as finite-range interactions. By fixing the two-
neutrons separation energy in 20C with available experimental data, it is studied the scaling of
the real (δR0 ) and imaginary parts of the s−wave phase-shift with the variation of the n−18C
binding energy. Universal characteristics are identified for the pole-position of k cot(δR0 ) and
effective-range parameters. It was verified that the excited state of 20C goes to a virtual state
when increasing the n−18C binding energy, resembling the neutron-deuteron behavior in the
triton.

The basic formalism for a three-body halo nucleus formed by a core and two neutrons
interacting via two-body separable potential is presented in Refs. [37,38]. The n−n interaction
was considered fixed, such that it was obtained the usual virtual-state energy, Enn = −143 keV.
For the n− c subsystem (Enc = E19C), the bound-state energies are varied within a range given
by experimental available data, ranging from −160±110 keV [39] to −530±130 keV [40]. The
n − n − c three-body ground-state binding energy is fixed at E20C = − 3.5 MeV. The units
for this case are such that ~ = 1, with momentum variables in fm−1 and the unit conversion
given by ~2/mn = 41.47 MeV fm2. The core-mass number is defined as A = mc/mn, with
µnc = Amn/(A+ 1) being the reduced mass for the n− c system, such that we have A = 18 and
µnc = (18/19)mn in the specific system we are considering.

The zero-range two-body interaction considered for the s−wave elastic n − (nc) scattering
formalism in Ref. [37] was extended to include finite-range two-body interactions, with separable
form, given by

Vij(p, p
′) = λij

(
1

p2 + β2ij

)(
1

p′2 + β2ij

)
, (1)

where ij = nn or nc, respectively, for the n − n or n − c two-body subsystems. λij and βij
refer to the strength and range rij of the respective two-body interaction. For negative bound
or virtual two-body energies Eij , the corresponding relations for the strengths and ranges are

λij =
−2πµij

βij(βij ± κij)
, rij =

1

βij
+

2βij
(βij ± κij)2

, (2)

where κij =
√
−2µijEij , with (+) for bound and (−) for virtual states.

By following the formalism given in Ref. [38] for the on-shell scattering amplitude hn(k;E),
where E is the three-body energy E ≡ E(ki), we obtain:

hn(k;E) =
eiδ0 sin δ0

k
=

1

k cot δ0 − ik
, (3)

with the on-shell relative momentum given by k ≡ ki ≡ |~ki| = |~kf | =
√

2µn(nc) (E − Enc) and

the reduced mass is µn(nc) = mn(A+ 1)/(A+ 2).



The validity of the picture found with the renormalized zero-range model in Ref. [37] is
verified with finite-range interactions in [38] compatible with the nuclear force. The analysis
follow a suggestion given in Ref. [34] for a parameterization of the effective-range expansion of
k cot δR0 , where δR0 is the real part of the corresponding s−wave phase shifts. With E0 being the
pole position for the energy, we have

k cot δR0 =
−a−1 + b E + c E2

1− E/E0
, (4)

where a [n − (nc) scattering length], b and c are the adjustable parameters. When considering
short-ranged interactions, such that we have fixed the two-neutron separation energy in 20C (3.5
MeV [39]) and the n − n virtual state energy (Enn = −143 keV), as the 19C binding energy is
varied from 0.2 to 0.8 MeV, the corresponding parameters are given in the following Table 1,
where rnn and rnc are the corresponding ranges.

Table 1. One-neutron separation energy in 19C, obtained by the given low-range parameters of
the separable potential. The values of βnc were obtained by fitting the two-neutron separation
energy in 20C (3.5 MeV [39]), with the n − n interactions fixed by the virtual state energy,
Enn = −143 keV. In this case, we fix βnn =24.5 fm−1 (rnn =0.1228).

|E19C|(keV) 200 400 600 800 830

βnc(fm
−1) 18.970 17.036 15.592 14.395 14.234

rnc(fm) 0.157 0.174 0.190 0.205 0.207

The parameters for the low-range potential shown in Table 1 provide results consistent with
the ones obtained in Ref. [37] when using renormalized zero-range interactions. In Fig. 1 we
present the results obtained by considering short-range interactions, reproduced from Ref. [38].
From this Fig. 1, by a fitting procedure, one can obtain the values for the parameters of the
effective-range expansion (4). The corresponding parameters are shown in Table 2.

Table 2. Effective-range parameters, obtained by fitting Eq. (4) to Fig. 1, when considering
different values of |E19C| (first column) with short-range potentials.

|E19C| −1/a 104 b 108 c E0 d rnc

(keV) (fm−1) (fm.keV)−1 (fm.keV2)−1 (keV) (fm−1) (fm)

200 0.006 5.579 5.717 1304 0.831 0.157
400 0.066 6.742 9.144 749.0 0.622 0.174
600 0.234 9.840 13.16 402.9 0.652 0.190
800 1.798 44.67 35.19 78.86 2.153 0.205
830 5.149 119.8 85.78 28.98 5.497 0.207

Finally, we observe that, in analogy with the known behavior of the elastic neutron-deuteron
doublet s−wave scattering amplitude, the results presented in [37,38] confirm that the real part
of the elastic s−wave phase shift (δR0 ) reveals a zero when the n − n − c system is close to an
excited Efimov state (bound or virtual). For more details on this investigation, see Ref. [38],
where the zero-range results are being compared with finite-range ones, by using separable one-
term two-body interactions with different parametrizations. In this reference, results for the
s−wave absorption parameter are also presented. Our expectation is that a study with more
realistic potential models (following the approach of Ref. [41]), will confirm the main conclusions
on the universal properties verified for the n−19C scattering in the models used in Refs. [37,38].
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Figure 1. The function (1 − EK/E0)k cot δR0 , where E ≡ EK and E0 is the pole position,
is given in terms of EK ≡ k2/(2µn,nc), by considering one-term separable low-range potentials
(large β values), shown in Table 1. For each case, we plot the results obtained for different values
of the two-body binding energy |Enc|, as indicated inside the frame (adapted from Ref. [38]).

3. Scaling behavior in atom-dimer α− (α− β) scattering with mα � mβ

As motivated in our introduction, large mass imbalanced systems can better be investigated in
cold-atom experiments in view of possibilities to alter the two-body scattering length by tuning
a Feshbach resonance with magnetic fields. Therefore, it is interesting to extend the approach
considered in section 2 to the case of the collision of a heavy atom α on a dimer formed by α and
a lighter atom β, in the case that mα � mβ. For this kind of system, one can also consider a
Born-Oppenheimer (BO) approach in addition to the basic Faddeev three-body formalism that
was used for the n − (n −18 C) system, and check for the properties of the s-wave elastic cross
section, while keeping the essence of the Efimov physics.

For that aim, we have examined the low-energy collision of a heavy particle α with a weakly-
bound two-body α− β system. The heavy-heavy interaction is assumed zero as this should not
affect the driving Efimov physics, which is originated by the heavy-light resonant interaction as
already pointed out long ago by Fonseca and Shanley [7]. In this case the Efimov physics of the
system is driven by the mass ratio and the ratio between the weakly-bound energy of the two-
body system Bαβ and a three-body energy scale, which can be chosen as the three-body bound
state energy [25]. The two-body bound-state energy can also be represented by the corresponding
very-large positive two-body scattering length, which is given by a ≡ aαβ =

√
(2µαβ/~2)/Bαβ,

where µαβ is the reduced mass between α and β particles.
In this case, for a very large mass ratios mα � mβ, namely for our purpose we choose

mα/mβ = 20 we can show that the minimum of the s-wave elastic cross-section appears and
more than one. These minima are associated with the poles of k cot δR0 , which are associated
with the long range Efimov potential, strengthen by the mass ratio effect that implies a smaller
geometrical ratio between the Efimov states as larger is the mass asymmetry in the heavy-heavy-
light system.

Our results [42], which are verified for several small values of Bαβ, by using Faddeev approach
as well as a BO approximation, are being exemplified in two panels of Fig. 2 for the cases that
the mass-ratios is given by A = mβ/mα = 0.08 and 0.05, when considering Bαβ = 0.05B3,



where B3 is an energy scale that we assume equal to the three-body ground-state energy. The
novel feature emerging in these two panels is verified by the possibility that more zeros can be
identified in the cross-section (or more poles in the k cot δR0 ), as the mass asymmetry increases.
This observation is closely related to the dominance of the Efimov long-range potential, which
becomes more visible as the mass asymmetry increases. In a semi-classical description such
zeros should come as a consequence of the interference between different classical trajectories
that passes around the two sides of the bound target. Therefore, it is conceivable that more zeros
of the s−wave cross-section should appear as the intensity of the Efimov long range potential
raises.

As a final remark on this case, we should point that the ratio between the positions of the
scattering momentum k(n) of the two-zeros shown in the upper plot of Fig. 2, for A = 0.05, is
given by

√
E(n)/E(n+1) = 6.5, when the two-body energy is Bαβ = 0.05B3. This result, when

compared with the corresponding Efimov ratio (note that

√
B

(n)
3 /B

(n+1)
3 ≈ 5 for Bαβ = 0, in this

mass asymmetric case), strongly suggests the plausibity of the above semi-classical description.
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Figure 2. Results obtained for the total s−wave cross-section σ (in arbitrary units) as a function
of
√
E/B3, by considering the mass-ratios A ≡ mβ/mα =0.05 and 0.08, with Bαβ/B3 = 0.05. As

shown, by decreasing the mass ratio A (from lower to upper panels), we can already identify the
emergence of a second minimum in σ. For A =0.05, the ratio between the scattering momenta
where the two minima are ocurring (with Bαβ/B3 = 0.05), which is ∼ 6.5, can already be
compared with the ratio between the Efimov levels in the three-body bound-state spectrum

(where

√
B

(n)
3 /B

(n+1)
3 ≈ 5 for Bαβ = 0).



4. Concluding remarks
In the introduction we give the motivations to study mass-asymmetric systems in nuclear and
atomic cases, and following it in section 2, we shortly review results already obtained on the
low-energy properties of the elastic s−wave neutron−19C elastic scattering near the critical
condition for the occurrence of an excited Efimov state. The analysis of that results was done in
close analogy with the case of the s−wave neutron-deuteron doublet phase-shift, where it is well
known that at low-energies the properties of the neutron-deuteron doublet state is dominated by
the Efimov physics, and the parameters of the effective range expansion of the neutron-deuteron
doublet s−wave phase-shift present universal scaling laws with the triton binding energy for
fixed nucleon-nucleon scattering lengths and effective ranges.

Next, by following the approach considered for the neutron−19C scattering, it was
communicated some examples on large mass-asymmetric cases of interest in recent cold-atom
investigations. The low-energy s-wave elastic cross-section results were obtained for the collision
between a heavy atom α and a weakly-bound heavy-light (α − β) sub-system. These studies
are being motivated by the actual experimental possibilities, along the lines as reviewed in
Ref. [27]. We should also point out the relevance of an extension of the present investigation to
heteronuclear ultracold quantum gases.

As being verified, the scattering observable k cot δR0 presents poles, corresponding to the
zeros of the s−wave cross section, which can be directly connected with the Efimov physics, as
observed when approaching the unitary limit. Here we have presented a sample of results for the
mass-imbalanced system, considering mβ/mα = 0.08 and 0.05 in the case that Bαβ = 0.05B3. As
shown, a second pole in k cot δR0 can be found as we increase the imbalance between the masses
of the components of the three-body system. A more detailed investigation is in progress.
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[9] Cornelius Th and Glöckle W 1986 J. Chem. Phys. 85 3906

[10] Dasgupta S, Mazumdar I, Bhasin V S 1994 Phys. Rev. C 50 R550
[11] Fedorov D V, Jensen A S, Riisager K 1994 Phys. Rev. Lett. 73 2817
[12] Amorim A E A, Frederico T and Tomio L 1997 Phys. Rev. C 56 R2378
[13] Frederico T, Tomio L, Delfino A and Amorim A E A 1999 Phys. Rev. A 60 R9
[14] Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl
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