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Abstract. Quantum systems with a strangeness degree of freedom are very important as
they provide an extra dimension, and hence a deeper insight into nuclear matter. Usually
phenomenological potentials obtained through meson exchange theories are used in investigating
these hypernuclear systems. In this paper potentials for lambda-nucleon interactions in the
spin singlet and spin triplet states, constructed through fixed-angular momentum inversion
based on Marchenko theory, are presented. Owing to experimental difficulties in obtaining a
sufficient number of lambda-nucleon scattering events, theoretical phase shifts are used as input
for the inversion. The constructed potential is energy-independent, making it more suitable for
quantum-mechanical few-body calculations.

1. Introduction

The choice of a suitable baryon-baryon potential for use in simulations has been one of the
preoccupations right at the heart of nuclear physics for much of its history. In particular,
the last two or three decades has seen an increased effort towards understanding baryon-
baryon interactions for systems with a strangeness degree of freedom. Much of the effort has
been directed towards single (S = −1) and double (S = −2) strangeness systems. These
potentials are important for many reasons. For example, they are used as input in simulations
of hypernuclei. The glue-like role of hyperons within hypernuclei and the nonmesonic decay of
hyperons in large-baryon number systems through the weak interaction are phenomena requiring
further elucidation that may only come from more reliable hyperon-nucleon potentials. These
interactions also provide a deeper understanding of multistrangeness systems such the core of a
neutron star, whose equation of state requires hyperon-nucleon and hyperon-hyperon potentials.

Meson-exchange theories have been the principal framework for developing most of the
hyperon-nucleon and hyperon-hyperon potentials currently in use for few-body calculations.
The most widely used meson-exchange potentials are the soft-core versions of the Nijmegen
potentials (Rijken et al. [1]), which were first formulated in de Swart et al. [2]. A historical
review of the development of the Nijmegen potentials is found in de Swart et al. [3] and Hiyama
et al. [4]. While most of these potentials do successfully address certain important issues such
as the overbinding problem, they still suffer some inadequacies. The sensitivity of few-body
calculations to the choice of potentials is symptomatic of these inadequacies, within the error
limits of the few-body method used. Could these inadequacies stem from a much wider problem



of nuclear physics using potentials constructed between structureless hadrons, even at energy
scales for which the quark degrees of freedom in Quantum Chromodynamics (QCD) represent
the “correct” physics? Already, there has been considerable effort in building new potentials
based on QCD. The Kioto-Niigata potential for all interactions between spin-1/2 octet baryons
(n, p, Σ+, Σ0, Σ−, Ξ−, Ξ0 and Λ) is one such development (Nakamoto et al. [5], Fujiwara et

al. [6] - [7]). However, these quark-model potentials have not enjoyed widespread applications in
few-body calculations as the meson-exchange potentials. A more systematic inclusion of QCD
theories in nuclear physics may hold more for the future of nuclear physics, as QCD is the
underlying theory of the strong interaction. The ambiguities of the currently used hypernuclear
potentials make it necessary to investigate potentials obtained using a different theory.

In this paper we propose new potentials for the ΛN interaction in the spin singlet and
triplet states, constructed not using QCD theories, but through quantum inverse scattering
theory. The fixed-angular momentum approach has been used in solving this inverse scattering
problem. Owing to its simplicity when compared to Gel’fand-Levitan inversion, the Marchenko
inversion scheme is used. The rest of the paper is organised as follows: Sections 2 is a brief
recapitulation of quantum inverse scattering at fixed angular momentum, Section 3 is devoted
to ΛN scattering experiments and theoretical scattering data, while Sections 4 and 5 contain
the results and conclusion, respectively.

2. The scattering matrix to potential inverse problem

2.1. Marchenko theory

Inversion may either be performed from experimental observables to the potential, or from the
scattering matrix to the potential. The inversion from scattering matrix to potential may either
be done at a fixed angular momentum (ℓ) or at a fixed energy (k), or using a hybrid formalism
for a given energy range and set of angular momenta. The usual normalisation ~

2ψl/2µ = ψl

is used. A detailed review on inverse scattering theory is found in the monograph by Chadan
and Sabatier [8], while an up-to-date review on applications in nuclear physics may be found in
Kukulin and Mackintosh [9]. Of interest in this paper is Marchenko inversion, one of the fixed-
angular momentum formalisms. For a short-range potential, Vℓ(r), with spherical symmetry the
potential for the scattering matrix at each partial wave ℓ is constructed by solving the following
Fredholm integral equation for Kℓ(r, r

′):

Kℓ(r, r
′) +Aℓ(r, r

′) +

∫

∞

r

Kℓ(r, s)Aℓ(s, r
′)ds = 0 (1)

Here Aℓ(r, r
′) is a symmetric input kernel that must be known. This input kernel is

constructed as in Fiedeldey et al. [10], taking into account any bound states:

Aℓ(r, r
′) =

1

2π

∫

∞

−∞

h+
ℓ
(k, r) {1− Sℓ(k)}h

+

ℓ
(k, r′)dk +

nb
∑

i=1

Mih
+

ℓ
(ki, r)h

+

ℓ
(ki, r

′) (2)

where nb is the number of physical bound states, if there are any, and h+
ℓ
(k, r) are Riccati-

Hankel functions. The Mi are normalisation constants for the bound-state wavefunctions. The
unphysical bound states, the Pauli Forbidden States, which may arise are usually removed
through supersymmetry.

In inversion theory Kℓ(r, r
′) arises as the kernel of a transformation from the solution of

Schrödinger equation for a free particle to any solution of the radial Schrödinger equation, for
example the Jost solutions (Levin [11], Marchenko [12]). Furthermore, this output kernel, which
has the property of strict upper triangularity (Kl(r, r

′) = 0, r > r′), satisfies a Goursat problem



which is right at the heart of quantum inverse scattering (Gel’fand and Levitan [13], Newton and
Jost [14], Agranovich and Marchenko [15], Levitan [16], Deift and Trubowitz [17], Newton [18]).
The auxiliary condition of this Goursat problem on the characteristic curve r = r′ ensures that
the diagonal entries in the kernel are read off as the scattering potential i.e.

−2
d

dr
Kℓ(r, r) = Vℓ(r) (3)

Therefore, solving the inverse problem of scattering matrix to potential can be understood in
proper mathematical terms as reconstructing the auxiliary conditions of this Goursat problem.

Marchenko inversion theory has been used to construct particle-particle potentials, in
particular nucleon-nucleon potentials (Benn and Scharf [19] - [20], Coz et al. [21], Kirst et

al. [22], Sparenberg and Baye [23]). Kukulin and Mackintosh [9] contains an extensive list of
references for particle-cluster and cluster-cluster potentials that have been constructed through
inversion theory, for example the neutron-alpha potential.

Here, we apply Marchenko inversion theory to construct ΛN potentials. A motivating factor
for such an attempt stems from the fact that the widely used models for the ΛN potential
disagree with experimental results in terms of single lambda binding energies (BΛ) of ground
state and excited states, even for low-baryon number hypernuclei.

2.2. Regularisation of linear system

Theory requires that Sℓ(k), which is a complex-valued function, should be known for all energies
or wavenumbers i.e. k ∈ [0,∞). However, the S-matrix is obtained from the phase shift, which is
itself derived from experimental observables: Sℓ(k) = exp(2iδℓ(k)), where δℓ(k) is the phase shift.
The energy range of these experimental observables are limited by laboratory technicalities, thus
limiting the energy range for which Sℓ(k) is known. With such a scattering matrix, the inverse
problem of computing the potential from the scattering matrix results in a linear system in
which there are more degrees of freedom than there are constraints to restrict these degrees of
freedom. Such an underdetermined linear system has no solution, or if it is homogeneous it has
infinitely many solutions.

In order to solve this inverse problem, some form of regularisation is needed, so as to provide
additional information. The most common approach, which is also the one that has been used
in this paper, is to interpolate Sℓ(k) using a rational function, and then extrapolating it to
sufficiently higher energies. Making use of the Bargmann rational-function representations of
the Jost functions (Chadan and Sabatier [8]), the following interpolation, which explicitly shows
the singularities of the Jost functions, is used:

Sℓ(k) =
N
∏

n=1

(

k + αℓ
n

k − αℓ
n

)(

k − βℓn
k + βℓn

)

(4)

Here αℓ
n are N simples situated both in the upper-half and lower-half k plane, while βℓn are N

simple poles situated only in the lower-half k plane (Massen et al. [24], Rakityansky et al. [25]).
For uniformity, one may use the same symbols to represent all the roots and singularities of the
S-matrix. In this case the parametrization takes the following form:

Sℓ(k) =
M
∏

n=1

k + αℓ
n

k − αℓ
n

, where M = 2N (5)

This parametrisation ensures conservation of probability current (unitarity of Sℓ(k)). It also
results in an exact solution to the Fredholm integral equation, as its kernel becomes degenerate;
no quadrature is therefore needed (Sofianos et al. [26]). Kirst et al. [22] carries an outline of the
procedure for transforming the integral equation into a linear system.



3. ΛN elastic scattering

There is very little data on ΛN scattering from experiments. This is because of the difficulty
in using free hyperons as projectiles or targets in these experiments, owing to their very short
lifetimes (about 10−10 s). When compared to free protons that do not decay, the extremely short
lifetime of free hyperons poses enormous difficulties. Cross sections for the Λp elastic scattering
reaction

Λ + p→ Λ+ p (6)

have been reported for laboratory-frame Λ momenta up to a few hundreds of GeV/c. Most
of the Λp scattering data obtained have large error bars, and a low number of scattering events,
insufficient to constraint the ΛN interaction. The use of such high-momentum Λ beams has
significantly increased the Λ decay lengths from a few millimetres to several centimetres, thereby
increasing the chances of scattering events in recent experiments. However, the higher the
incident momenta, the greater the number of partial waves that must be accounted for; usually,
only the s-waves suffice at low incident momenta. In an experimental set up Λn scattering is
not as manageable as Λp scattering, due to the inexistence of free stable neutron targets. The
lifetime of a free neutron is only approximately 881.5 s.

The link between quantum scattering theory and two of the observables that are usually
measured in scattering experiments, differential cross section (dσ/dΩ) and integrated cross
section (σ), is established by the scattering amplitude, fk(θ). The scattering amplitude accounts
for the distortion suffered by the incoming wave after scattering. In terms of Partial Wave
Analysis, the scattering amplitude may be written in the Faxen-Holtzmark formalism (Joachain
[27]) as

fk(θ) =
1

2ik

∞
∑

ℓ=0

(2l + 1)(Sℓ(k)− 1)Pℓ(cos θ) (7)

where Pℓ is a Legendre polynomial at scattering angle θ. Solving the Radial Schrödinger
Equation, one gets the phase shift, which is directly related to the scattering amplitude and cross
sections. Using phase shift analysis, the contribution of each partial wave may be independently
extracted. A poor phase shift analysis may therefore compromise the inversion procedure. This
is an issue which is not of interest in this paper.

For our construction we have as input theoretical 1S0 and 3S1 phase shifts computed by
Rentmeester and Klomp [28] using the NSC97f potential. Even after NN elastic scattering
data became widely available, theoretical NN data continued playing an important role in our
understanding of the NN force. It is hoped that this strategy will throw more light on the nature
of baryon-baryon interactions in the single strangeness sector.

4. Results

The results are shown for the s-wave Λp (Figures 1(a) and 1(b)) and Λn (Figures 2(a) and 2(b))
potentials, both in the S = 0 and S = 1 states. The general features of a baryon-baryon
interaction are present in these potentials, except for the Λn(3S1) potential where the short
range repulsion is absent. The well-known result, that the ΛN(3S1) potential is weaker than the
ΛN(1S0) potential, is also verified. However, an important feature of these potentials is that the
strongest attraction occurs at a smaller radial distance than with most other lambda-nucleon
potentials.

Poor choices of Sℓ(k) parametrisation have been known to result in unphysical oscillations
in inversion potentials, even in cases where phase shifts from experiments are used (Howell et
al. [29]). These oscillations are absent in the results obtained here. However, the presence
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(a) Λp potential in 1S0 state.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
r/fm

−50

−25

0

25

50

75

100

125

150

175

200

V
Λ
p
 /
 M

eV

3S1

(b) Λp potential in 3S1 states
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(a) Λn potential in 1S0 state.
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(b) Λn potential in 3S1 states

Figure 2

of a small repulsion barrier, which is quite negligible in the spin triplet states, may still be a
pathology arising from the parametrisation. Since Λ is a neutral elementary particle, this barrier
could not possibly be a Coulomb repulsion. Further investigation is needed to clarify the effects
of various Sℓ(k) interpolations. This computational artefact is not expected to detract from the
overall usefulness of our potential. This may be better appreciated in light of the inadequacies
of the current potential models used in quantum-mechanical few-body calculations.

5. Conclusion

New spin singlet and spin triplet state potentials for the Λp and Λn interactions have been
constructed for ℓ = 0 through Marchenko theory, a quantum inverse scattering formalism. These
potentials are energy-independent, a feature that makes them ideal for few-body calculations.
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