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Abstract. A recent experiment on the 4He(8He, 8Be)4n reaction reported to have a resonant
state at ER = 0.83±0.65±1.25 MeV above the 4n breakup threshold and an upper limit of width
Γ = 2.6 MeV [1, 2]. Motivated by the experiment, using a phenomenological T = 3/2 three
neutron force and a realistic NN interaction, we solve ab initio solution of the 4n Schrödinger
equation with the complex scaling method. We find that in order to generate narrow 4n resonant
state a remarkably attractive 3N force in the T = 3/2 channel is necessary.

1. Introduction
Historically, we have been discussing on the possibility of detecting a four-neutron (4n) structure
of bound or resonant state for the last fifty years in Refs. [3, 4, 5].

For this purpose, there were so many experimental effort to find bound or resonant states of
4n systems [6, 8, 7, 1, 2]. However, it was difficult to confirm the state.

Also, theoretically, some of authors tried to find some states in 4n system and however, they
showed the impossibility to observe a bound 4n state [9, 10, 11, 12, 13, 14, 15, 17, 16].

A recent experiment on the 4He(8He, 8Be)4n reaction generated an excess of 4n events with
low energy in the final state. This observation has been associated with a possible 4n resonance
with an estimated energy ER = 0.83 ± 0.65 ± 1.25 MeV above the 4n breakup threshold and
an upper limit of width Γ = 2.6 MeV [1, 2]. Due to the Low statistics, it however, was not
possible to obtain the spin or parity for the corresponding state. It shoule be noted that a
further analysis of the experimental results of Ref. [6] concluded that the observed (very few)
events were also compatible with a ER = 0− 2 MeV tetraneutron resonance [8].

Motivated by this recent experimental data, we will focus on the strength of the 3N force in
the total isospin T = 3/2 channel. The main purpose of this work is, thus, to investigate whether



a resonant tetraneutron state is compatible with our knowledge of the nuclear interaction, in
particular with the T = 3/2 3N force. To this aim we will fix the NN force with a realistic
interaction and introduce a simple isospin-dependent 3N force acting in both isospin channels.
Its T = 1/2 part will be adjusted to describe some A = 3 and A = 4 nuclear states and the
T = 3/2 part will be tuned until a 4n resonance is manifested. The exploratory character of
this study, as well as the final conclusions, justify the simplicity of the phenomenological force
adopted here.

2. Method and interaction
We solve the following equation

H = T +
∑
i<j

V NN
ij +

∑
i<j<k

V 3N
ijk , (1)

where T is a four-particle kinetic-energy operator, V NN
ij and V 3N

ijk are respectively two- and

three-nucleon potentials. In this work we use the AV8′ version [18] of the NN potentials derived
by the Argonne group. This model describes well the main properties of the NN system and it is
relatively easy to handle. The main properties of this interaction are outlined in the benchmark
calculation of the 4He ground state [19].

This AV8 potential leads less bound of three nucleon systems, 3H and 3He. Therefore, we
introduce a purely phenomenological 3N force which is assumed to be isospin-dependent and
given by a sum of two Gaussian terms:

V 3N
ijk =

3/2∑
T=1/2

2∑
n=1

Wn(T )e
−(r2ij+r2jk+r2ki)/b

2
n Pijk(T ) . (2)

where Pijk(T ) is a projection operator for the total three-nucleon isospin T state. The
parameters of this force – its strength Wn and range bn – are adjusted to reproduce the
phenomenology.

In the case of T = 1/2 the parameters were fixed in Ref. [?] when studying the Jπ = 0+

states of 4He nucleus. They are:

W1(T = 1/2) = −2.04 MeV, b1 = 4.0 fm,

W2(T = 1/2) = +35.0 MeV, b2 = 0.75 fm.
(3)

Using this parameter set, in addition to the AV8′ and Coulomb interaction, one obtains the
following binding energies: 3H=8.41 (8.48) MeV, 3He=7.74 (7.72) MeV, 4He (0+1 )= 28.44 (28.30)
MeV and the excitation energy of 4He(0+2 )=20.25 (20.21) MeV [?], where the experimental
values are shown in parentheses. Furthermore, this parameterization allows one to reproduce
the observed transition form factor 4He(e, e′)4He(0+2 ) (cf. Fig. 3 of Ref. [?]).

However, the contribution of isospin T = 3/2 configurations to the binding energies of the 3H
and 3He nuclei are negligible small, then, we do not include this configuration in the calculation.
On the other hand, T = 3/2 force contributes to the energy of 4n system mainly. Therefore, we
introduce T = 3/2 force the following. We take the same function of T = 1/2 force, Namely,

W1(T = 3/2) = free, b1 = 4.0 fm,

W2(T = 3/2) = +35.0 MeV, b2 = 0.75 fm.
(4)

Here, attractive part of T = 3/2 force, W1 is free parameter. We tune the W1 so as to analyze
the existence of 4n resonance state.



Here, we focus on the possible existence of the narrow resonant states of 4n, which may
enhance significantly 4n production cross section. We employ the complex scaling method
(CSM) in order to calculate resonance positions and widths. The CSM and its application
to nuclear physics problems are extensively reviewed in Refs. [20, 21] and references therein.
Using the CSM, the resonance energy (its position and width) is obtained as a stable complex
eigenvalue of the complex scaled Schrödinger equation:

[H(θ)− E(θ)]ΨJM,TTz(θ) = 0 , (5)

where H(θ) is obtained by making the radial transformation of the four-body Jacobi coordinates
(Fig. 1) in H of Eq. (1) with respect to the common complex scaling angle of θ:

rc → rc e
iθ, Rc → Rc e

iθ, ρc → ρc e
iθ (c = K,H). (6)

According to the ABC theorem [22, 23], the eigenvalues of Eq. (5) may be separated into three
groups:

For CSM, we use Gaussian Expansion Method (GEM) [24, 25, 26, 27, 28, 29].
In order to expand the system’s wave function ΨJM,TTz(θ) we employ the Gaussian basis

functions of the same type as those used in the aforementioned references. An isospin rather
than a neutron-proton (particle) basis is used to distinguish between different nuclear charge
states 4n, 4H, 4He and 4Li. In the GEM approach, the four-nucleon wave function is written as
a sum of the component functions in the K- and H-type Jacobi coordinates (Fig. ??), employing
the LS coupling scheme:

ΨJM,TTz(θ) =
∑
α

C(K)
α (θ)Φ(K)

α +
∑
α

C(H)
α (θ)Φ(H)

α , (7)

where the antisymmetrized four-body basis functions Φ
(K)
α and Φ

(H)
α (whose suffix JM, TTz are

dropped for simplicity) are described by

Φ(K)
α = A

{[
[[ϕ

(K)
nl (rK)φ

(K)
νλ (ρK)]Λ ψ

(K)
NL(RK)]I

×[[χs(12)χ1/2(3)]s′χ1/2(4)]S

]
JM

× [[ηt(12)η1/2(3)]t′η1/2(4)]TTz

}
, (8)

Φ(H)
α = A

{[
[[ϕ

(H)
nl (rH)φ

(H)
νλ (ρH)]Λ ψ

(H)
NL(RH)]I

×[χs(12)χs′(34)]S

]
JM

× [ηt(12)ηt′(34)]TTz

}
, (9)

with α ≡ {nl, νλ,Λ, NL, I, s, s′, S, t, t′}. A is the four-nucleon antisymmetrizer. The parity of
the wave function is given by π = (−)l+λ+L. The χ’s and η’s are the spin and isospin functions,
respectively. The spatial basis functions ϕnl(r), φνλ(ρ) and ψNL(R) are taken to be Gaussians
multiplied by spherical harmonics:

ϕnlm(r) = Nnl r
l e−(r/rn)2 Ylm(r̂) ,

φνλµ(ρ) = Nνλ ρ
λ e−(ρ/ρν)2 Yλµ(ρ̂) , (10)

ψNLM (R) = NNLR
L e−(R/RN )2 YLM (R̂) .

Here, we take the Gaussian ranges lie in geometric progression:

rn = r1 a
n−1 (n = 1− nmax) ,

ρν = ρ1 α
ν−1 (ν = 1− νmax) , (11)

RN = R1A
N−1 (N = 1−Nmax) .
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Figure 1. Four-nucleon Jacobi
coordinates of K-type and H-type
configurations.
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3. Results and Discussion
The recent experiment, providing evidence of the possible existence of a resonant tetraneutron,
reported some structure at E=0.83±0.65(stat.)±1.25(sys.) MeV, measured with respect to the
4n breakup threshold with an estimated upper limit width Γ=2.6 MeV [1, 2].

However, the experiment data did not report any spin-parity. Therefore, to indicate the spin-
parity, e calculate a critical strength of the attractive 3N forceW1(T = 3/2), defined by Eq. (2),
to make different 4n states bound at E = −1.07 MeV. This energy corresponds to the lowest

value compatible with the RIKEN data [2]. The calculated results, denoted as W
(0)
1 (T =3/2),

are given in Table 1.

Table 1. Critical strength W
(0)
1 (T = 3/2) (MeV) of the phenomenological T = 3/2 3N force

required to bind the 4n system at E = −1.07 MeV, the lower bound of the experimental value [2],
for different states as well as the probability (%) of their four-body partial waves. The table is
taken Ref.[30]

Jπ 0+ 1+ 2+ 0− 1− 2−

W
(0)
1 (T = 3

2) −36.14 −45.33 −38.05 −64.37 −61.74 −58.37

S-wave 93.8 0.42 0.04 0.07 0.08 0.08
P -wave 5.84 98.4 17.7 99.6 97.8 89.9
D-wave 0.30 1.08 82.1 0.33 2.07 9.23
F -wave 0.0 0.05 0.07 0.0 0.10 0.74

As one can see from this table, the smallest critical strength is W
(0)
1 (T = 3/2) = −36.14

MeV and corresponds to the J = 0+ state. It is consistent with a result reported in Ref. [16],
where the tetraneutron binding was forced using an artificial four-body force in conjunction
with the Reid93 nn potential. The next most favorable configuration is established to be a 2+

state, which is bound by 1.07 MeV for a 3NF strength of W
(0)
1 (T = 3/2). The calculated

level ordering is Jπ = 0+, 2+, 1+, 2−, 1−, 0−. The level ordering calculated in Ref. [16] is
Jπ = 0+, 1+, 1−, 2−, 0−, 2+. These differences are related to the different binding mechanism of
the four-nucleon force used in Ref. [16].



It should be noted that, in comparison with W1(T =1/2) = −2.04 MeV established for the
T = 1/2 3N force, we need extremely strong T = 3/2 attractive term to make the 4n system
weakly bound; when the J = 0+ state is at E = −1.07 MeV with W1(T =3/2) = −36.14 MeV,
the expectation values of the kinetic energy, NN and 3N forces are +67.0,−38.6 and −29.5
MeV, respectively. We see that the expectation value of the 3N potential is almost as large as
that of NN potential. The validity of this strongly attractive T = 3/2 3N force will be discussed
after presenting results for 4n resonant states.

After determining critical strength of W1(T = 3/2) required to bind the tetraneutron we
gradually release this parameter letting the 4n system to move into the continuum. In this way
we follow complex-energy trajectory of the 4n resonances for J = 0+, 2+ and 2− states. We
remind the readers that these trajectories are controlled by a single parameter W1(T = 3/2),
whereas other parameters remain fixed at the values given in Eq.(3) and Eq.(4).
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Figure 2. Tetraneutron resonance
trajectory for the Jπ = 0+ state.
The circles correspond to resonance
positions for the AV8′ and the tri-
angles INOY04’(is-m) potential [31].
Parameter W1(T = 3/2) of the ad-
ditional 3NF was changed from −37
to −16 MeV in steps of 1 MeV for
calculations based on AV8′ and from
−36 to −24 MeV in steps of 2 MeV
for INOY04’(is-m). To guide the eye
the resonance region suggested by the
measurement [2] is indicated by the
arrow at the top. The figure is taken
from Ref.[30]

As was expected, based on our experience from previous studies on multineutron systems [15,
17], tetraneutron trajectory turns out to be independent of the NN interaction model,
provided this model reproduces well the NN scattering data. To illustrate this feature we
have calculated the 4n resonance trajectory for J = 0+state using the INOY04(is-m) NN
model [31]. This realistic interaction strongly differs from the other ones in that it contains a fully
phenomenological and a strongly non-local short range part in addition to the typical local long
range part based on one pion-exchange. Furthermore, this model reproduce the triton and alpha-
particle binding energies without any 3NF contribution. Finally, P -waves of this interaction are
slightly modified in order to match better the low energy scattering observables in the 3N
system. Regardless of the mentioned qualitative differences of the INOY04(is-m) interaction
with respect to the AV8′ one, the results for the 4n resonance trajectory are qualitatively the
same and demonstrate only minor quantitative differences. These results are displayed in Fig. 3a.

In order to prove or disprove the possible existence of the tetraneutron resonances, one sould
consider the validity of the strongly attractive 3N force in the isospin T = 3/2 channel.

Here, it should be noted that W1(T = 1/2) = −2.04 MeV to reproduce the energies of A=3
and 4 nuclei. As shown in Fig.2, in order to have resonant state, we need W1(T3/2) = −16
MeV, which is still larger than W1(T = 1/2) = −2.04 MeV.

Therefore, we investigate the consequences of a strongly attractive 3NF component in the
isospin T = 3/2 channel. It is clear that such a force will have the most dramatic effect on
nuclei with a large isospin number, i.e. neutron (or proton) rich ones as well as on infinite
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Figure 3. (color online) a) Cal-
culated energies of the lowest T =
1, Jπ = 2− states in 4H, 4He and 4Li
with respect to the strength of T =
3/2 3N force, W1(T = 3/2). The hor-
izontal dashed lines show the 3He+N
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old indicates the bound state, while
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onance obtained by the diagonaliza-
tion of H(θ = 0) with the L2 basis
functions. The figure is taken from
Ref.[30].

neutron matter. Nevertheless this includes mostly nuclei with A > 4, not within our current
scope. Still we will investigate the effect on other well known states of A = 4 nuclei, namely
negative parity, isospin T = 1 states of 4H, 4He and 4Li. These structures represent broad
resonances [32] (see Table 2) established in nuclear collision experiments. Calculated energies
of those states are shown in Fig. 3 with respect to increasing W1(T = 3/2) from −37 to 0 MeV.
The solid curve below the corresponding threshold indicates a bound state, whereas the dotted
curve above the threshold stands approximately for the resonant state obtained within a bound
state approximation.

As demonstrated in Fig. 3, values of an attractive 3NF term in the range of W1(T =3/2) ≃
−36 to −30 MeV, which is compatible with a reported 4n resonance region in Ref. [2], gives rise
to the appearance of bound J = 2− state in 4H, 4He(T = 1) and 4Li nuclei. Unlike observed in
the collision experiments, these states become stable with respect to the 3H (3He) + N decay
channels. This means that the present phenomenological W1(T = 3/2) is too attractive to
reproduce low-lying states of 4H, 4He (T = 1) and 4Li.

In contrast, it is interesting to see the energy of 4n system when we have just unbound states
for 4H, 4He (T = 1) and 4Li in Fig. 2. Use ofW1(T = 3/2) = −19 MeV gives rise to an unbound
state with J = 2− in 4H with respect to disintegration into 3H+N . However, using this strength
of W1(T = 3/2), we have already a very broad 4n resonant state at Re(Eres) = 6 MeV with
Γ = 7.5 MeV, see Fig. 3a, which is inconsistent with the recent experimental claim [2] of a
resonant 4n. Moreover the value of W1(T = 3/2) that reproduces the observed broad resonance

Table 2. Observed energies ER and widths Γ (in MeV) of the Jπ = 2−1 and 1−1 states in
4H, 4He (T = 1) and 4Li, ER being measured from the 3H+n, 3H+p and 3He+p thresholds,
respectively [32].

4H 4He (T = 1) 4Li

Jπ ER (Γ) ER (Γ) ER (Γ)

2−1 3.19 (5.42) 3.52 (5.01) 4.07 (6.03)
1−1 3.50 (6.73) 3.83 (6.20) 4.39 (7.35)



data for the 2− state in 4H should be much less attractive than −19 MeV.

4. Conclusions
Motivated by the recent experimental claim regarding the possible existence of observable
tetraneutron 4n [1, 2] states, we have investigated the possibility that the 4n system exhibits a
near-threshold bound or narrow resonant state compatible with the reported data.

When studying the tetraneutron sensitivity to the ingredients of the nuclear interaction, we
have concluded that this system is not very sensitive to “experimentally allowed” modifications
in NN interaction. The most natural way to enhance a tetraneutron system near the threshold
is through an additional attractive isospin T = 3/2 term in the three-body force. We
have examined the consistency of the nuclear Hamiltonian modifications, required to produce
observable tetraneutron states, with other four-nucleon observables, like the low-lying T = 1
states in 4H, 4He and 4Li.
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