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Abstract. We propose an off-shell Coulomb-like amplitude, with an on-shell phase shift that
is accurate to within 9-10 digits. The full Coulomb amplitude is separated into the leading and
the auxiliary amplitudes using “the two-potential theory”. The leading amplitude reproduces
most of the on- and off-shell parts, while the auxiliary amplitude contributes mainly to the
off-shell part and minimally to the on-shell part.
Next we review in a critical manner, the three-body calculation method, developed during the
last four decades. A reminder to a threshold behavior investigation method is pointed out, based
on the three-body Faddeev equation. We discuss the Efimov physics and some extensions, which
are recovered from our predictions. The method may suggest a promising technique to resolve
the existing discrepancies between the current experimental and theoretical values.

1. Introduction
The Coulomb phase shift renormalization method has a long history [1],[2]-[7]. The most

plausible method was presented by Alt et al. [8]-[11]. Recently, we checked the reliability of
the renormalization method. It was found that the phase shift can be definitely represented
by the renormalization method. However, the screening range is unusually long [12]. In order
to obtain the proton-proton phase shift σ0(k)=96.8 deg. at E=1 keV by the renormalization
method, we need to solve the Lippmann-Schwinger (LS) equation in momentum space with
the screening range of 3nm, 1400 Gauss points, to within 250 significant digits (see Figure
1). Unfortunately, a serious cancelation of significant digits occurs without any warning signs,
misleading so the convereges to a wrong, unreliable value. Therefore, we confirmed that the
phase shift renormalization is well performed by such a proper significant digits. However,
Alt’s method cannot treat the nuclear interaction by the usual FORTRAN program. We have
presented the following generalized screened Coulomb potential V R(r) and the renormalization
phase ϕ(k,R) at the Groningen conference [13]:

V R(r) =
2kη(k)

r
e−(r/R)m (1)



ϕ(k,R) = η(k)
(
ln 2kR− γ/m

)
. (2)

In this case, we obtain a short cut-off potential by increasing m. After that, Deltuva et al. used
an effective short-range, screened Coulomb potential, by adopting m = 5. In the three-body
calculation, such two-body information is required for a wide two-body “sub-energy” region
−∞ < z′′ ≤ E. This is because,

z′′ = E − q′′2

2µ
(3)

for 0 ≤ q′′ <∞. (4)

In order to obtain the two-body off-shell amplitude for the screened Coulomb potential, by the
LS equation, one needs zero energy. Therefore, the most remarkable region of the Coulomb off-
shell amplitude is the origin i.e. z = 0 for the two- and three-body problems. The appropriate
ranges in the energy region from 0.1keV to 100 MeV, are listed in Table 1.

Table 1. Screening ranges for m = 1 and m = 5 with respect to the generalized screened
Coulomb potential by Eq.(1). These ranges are obtained so to guarantee the three digit accuracy
in the phase shift. Present ranges belongs to the asymptotic region. It is found that the m = 5
case yields on the average one order of magnitude shorter range than the case m = 1. In order to
obtain higher accuracy in the phase shift, still longer ranges are required. If the renormalization
method is used, efforts for getting the shorter ranges were shown to be ineffective.

Energy [MeV] m = 1 m = 5 σ0 [deg.]

100 11 fm 4 fm -0.370
50 35 fm 8 fm -0.523
20 110 fm 17 fm -0.826
10 300 fm 35 fm -1.17
1 900 fm 620 fm -3.66
0.1 1.0×104 fm 3.7×103 fm -10.7
0.01 1.0×105 fm 7.7×104 fm -16.3
0.001 3.0×106 fm 4.5×105 fm 96.8
0.0001 3.0×107 fm 6.2×106 fm 949.9

Despite of the suggestion of Deltuva et al., it is found that the case m = 5 does not essentially
improve over m = 1 case [14]-[16]. Therefore, we are afraid that the general use of unsatisfied
Coulomb off-shell amplitude could mislead the three-nucleon scattering calculation. So, one
may come to despair considering that the ASZ method may not have been successful for the
past four decades.

2. On-shell Coulomb Amplitude
We introduced an off-shell Coulomb-like amplitude in the last EFB-23 conference, in Aarhus

Denmark 2016 [12]. Before that we have introduced so-called “critical range” which satisfies
zero renormalization phase [17]-[25]. In this paper, we will review our method for the on-shell
Coulomb amplitude where the Coulomb phase shift is defined by the screened Coulomb phase
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Figure 1. Necessary digits to obtain three digits accurate Coulomb phase shift by the
renormalization method with the LS equation for m = 1 case.
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Figure 2. Necessary screening range to represent the three digits accurate Coulomb phase shift
by the renormalization method. m = 1 case in Eq.(1).

shift plus a renormalization phase: σ0(k) = δR0 (k) + ϕ(k,R). Therefore, the on-shell scattering
amplitude is separated into two parts for the S-wave case by

fC0 (k) = e2iϕ(k,R)
(e2iδR0 (k) − 1

2ik

)
+

(e2iϕ(k,R) − 1

2ik

)
. (5)

However, the “renormalized Coulomb amplitude” is usually defined by the first term of the right
hand side of Eq.(5), where the second term has been neglected without explanation [9].
In our method, we require ϕ(k,R) = 2nπ for n = 0, 1, 2, · · ·. Using this criterion, a “critical
range” is obtained, and the screened Coulomb phase shift becomes the Coulomb phase shift

itself: δR0 (k) = σ0(k), and the on-shell amplitude is given by fC0 (k) = (e2iδ
R
0 (k) − 1)/2ik. In

other words, the Coulomb phase shift can be obtained directly from the critical range. In FB20
conference (Chicago 2015), we pointed out that the screening range is not obtained by increasing
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Figure 3. Necessary screening range to represent the three digits accurate Coulomb phase shift
by the renormalization method. m = 5 case in Eq.(1).

a single range but by concatenating many discrete bands [26]. Since Alt’s renormalization phase
is given by Eq.(2) in the asymptotic region [27], we may set:

ϕ(k,R) = η(k)
(
ln 2kR− γ

m

)
= 2nπ. (6)

Therefore, our “critical range”, hereafter Alt’s range, becomes:

R =
1

2k
exp

( 2π

η(k)
+
γ

m

)
. (7)

We conclude that the screened Coulomb phase shift becomes the Coulomb phase shift by using
this critical range. However, a very long range is required to satisfy the asymptotic properties
(see Figures 2,3). Such a long range, due to the cancellation of significant digits, renders the
solution of the LS equation quite hard.

In order to avoid these difficulties, we obtained the best range parameters, by a fitting
method at a region much shorter than the asymptotic domain where the phase shift calculation
guarantees nine to ten digits accuracy (see Figures 1-3, and Table 1) [27].
Hereafter, the term “critical range” will be used to refer to these best range parameters.

3. A new Method for the off-shell Coulomb-like Amplitude
We presented an off-shell Coulomb-like amplitude in the EFB23 conference [12]. In this

paper, we review it and extend the results. We would like to introduce the two-potential theory
in r-space. The Schrödinger equation for the Coulomb wave function may be written in operator
form as:

(E −H0 − V R)|ψC >= V ϕ|ψC >= (V C − V R)|ψC > . (8)

Now, we assume a relation: V C |ψC >≈ V R′ |ψR′
>, where V R′

is a screened Coulomb
potential of range R′ with proper asymptotic properties and |ψR′

> the corresponding wave
function. This assumption makes sense in the frame of the above discussion of Alt’s Coulomb
renormalization method. Therefore, the asymptotic behavior for such a long range region leads



to V ϕ|ψC >≈ (V R′ − V R)|ψR′
>≡ V ϕ′ |ψR′

>→ 0 (for r → ∞). With this condition, we can
define a general solution |ψR > for the homogeneous equation in Eq.(8).
Finally, the general solution of Eq.(8) is given by

|ψC > = |ψR > +GRV ϕ|ψC > (9)

GR = [E −H0 − V R]−1 = G0 +G0T
RG0 ≡ G0ω

R, (10)

ωR = 1 + TRG0, (11)

ωR = 1 +G0T
R, (12)

where GR is Green’s function with the screened Coulomb potential V R.
By multiplying Eq. (9) from the left with V ϕ, an amplitude tϕR may be defined using |ψR >
and the plane wave |ψ0 >, as:

V ϕ|ψC >≡ tϕR|ψR >= tϕRωR|ψ0 > (13)

So, tϕR introduces all the long range properties in the Coulomb wave function, and also merits
for the proper asymptotic behavior mentioned above.
Therefore, Eq.(9) is rewritten by using Eq.(10), and Eq.(13),

|ψC > = |ψR > +GRtϕR|ψR >= |ψR > +G0ω
RtϕRωR|ψ0 > (14)

= |ψR > +GRV ϕ|ψC >= |ψR > +G0ω
RV ϕ|ψC > . (15)

Multiplying Eq.(14) from the left with V ϕ , and using Eq.(13), yields:

V ϕ|ψC >= tϕR|ψR > = V ϕ|ψR > +V ϕGRtϕR|ψR > . (16)

Here, we define a Coulomb-like off-shell T-matrix T̃C by

G−1
0 |ψC > = V C |ψC >≡ T̃C |ψ0 >, (17)

G−1
0 |ψR > = V R|ψR >= TR|ψ0 >, (18)

where T̃C has all the properties of the long range Coulomb wave function and the potential. In
addition it satisfies the Coulomb asymptotic behavior and our requirement of Eq.(6) which is
equivalent to the Lemma stated in our recent article [26].
Multiplying Eq.(14) from the left with V C and using Eq.(17), Eq.(18), we obtain

T̃C |ψ0 > = TR|ψ0 > +ωRtϕRωR|ψ0 > (19)

= TR|ψ0 > +ωRV ϕ|ψC > . (20)

Therefore, Eq. (19), Eq. (16), and Eq. (10) lead to the following operator relations:

T̃C = TR + T ϕR = TR + ωRtϕRωR, (21)

tϕR = V ϕ + V ϕGRtϕR (22)

TR = V R + V RG0T
R, (23)

where Eq. (21) is known as the amplitude by the two-potential theory. Multiplying from the
left Eq.(20) with < ψ0| and using < ψ0|ωR =< ψR|, we obtain

< ψ0|T̃C |ψ0 > = < ψ0|TR|ψ0 > + < ψ0|ωRV ϕ|ψC >

= < ψ0|TR|ψ0 > + < ψR|V ϕ|ψC > . (24)



Eq. (24) is equivalent to Eq. (21), and the amplitude T ϕR is obtained by using the partial wave
functions |ψR

L > and |ψC
L >.

T ϕR
L (p, p′;E) ≡ < ψR

L |V ϕ|ψC
L >=

∫ ∞

0
ψR∗
L (p, r)V ϕ(r, k)ψC

L (p
′, r)r2dr. (25)

This result guarantees the existence of the off-shell Coulomb-like T-matrix by Eq. (21) and Eq.
(25), which was not clearly stated in [28]. The off-shell value given by Eq.(25), is calculated
numerically, where the integrand is highly oscillatory and vanishes for very large values of r.
Therefore, Eq.(25) contributes to off-shell, and half-on-shell values. In our method, the on-shell
value of TR in Eq.(21) gives 9–10 digits of accuracy [27]. Therefore, it is obvious that the on-
shell value of T ϕR contains only the next order correction need to obtain an accuracy of 9–10
digits in the phase shift.
However, the numerical calculation of the on-shell value of Eq.(25) is very sensitive to the
convergence condition. Therefore, in order to calculate the on-shell value of Eq.(25), we can
adopt a screened Coulomb potential with a very large range (R ≪)R′ which appears in the
asymptotic region and is introduced to obtain the solution of Eq.(8). For such an R′, we can
accomplish the following relation:

T ϕR
L (k, k;E) =

∫ ∞

0
ψR∗
L (k, r)V ϕ(r, k)ψC

L (k, r)r
2dr ≡ ∆L (26)

→
∫ ∞

0
ψR∗
L (k, r)V ϕ′

(r, k)ψR′
L (k, r)r2dr ∼= − |TR

L |2

Im(TR
L )

× ϕ′L(k) (27)

with

ϕ′L(k) ≡ σL(k)− δRL (k) = tan−1 Im(TR
L +∆L)

Re(TR
L +∆L)

− tan−1 Im(TR
L )

Re(TR
L )

, (28)

where the last term in Eq.(27) is an auxiliary amplitude, ϕ′L(k) is the discrepancy between the
analytic Coulomb phase shift and our direct phase shift. We can find an adequate R′ which
satisfies Eq.(27). In ref.[12], we mentioned that the value of Eq.(26) vanishes. However, such
a condition is satisfied only for the case where the eigen-values of V C |ψC > and V R|ψR > are
identical. Our fitting procedure albeit not exact, reproduces the Coulomb phase shift with an
accuracy of 9–10 digits.
Therefore, we can conclude that the first term TR represents almost all on- and off-shell

Coulomb amplitude, with a compensation coming from the off-shell part of the second term.

4. Review of the three-hadron problem
Half a century has passed since the Faddeev equation was presented [29]. In the beginning,

it seemed that the obtained results fitted the experimental data well, in contrast to the results
of other methods. After that, improved results have been mainly due to the rapid growth
of the computer capacity as to how many partial waves can be incorporated, and what kind of
realistic two-body and three-body forces can be treated. These efforts have been done somewhat
with a technical professionalism. However, the ideas of the theoretical and methodological
approach of the Faddeev equation were investigated only in the beginning, that is, in 1960s and
1970s [30]-[34]. It seems that today, is a good time to start a “deep critical rethinking” of the
results obtained so far by the usual Faddeev calculations, in order to understand whether the
fundamental problems of the Faddeev equation still exist or not.

First of all, the quantitative agreements for Ay are not yet satisfied [35]. Recently, the
intensive discussion about the disagreements for the cross section minimum and Ay maximum



were pointed out by Sagara [36]. The so-called “Sagara discrepancy” was illustrated by a ratio
between theoretical and experimental data in the cross section minimum and the maximum
of Ay: Sdisc ≡(calculation-experiment)/experiment [37][38]. Such discrepancies have an energy
dependence which is commonly inversely proportional to the energy. It was claimed that the cross
section minimum problem was solved by using a three-body force named 2π3NF[39]. However,
it seems that the Ay puzzle has not yet been solved by such a systematic way with 2π3NF and
some other intensive 3NFs [40]. We are concerned about the energy dependence of the Sagara
discrepancy not only for the Ay puzzle, but also the cross section minimum. If such a 3NF can
fundamentally reproduce the cross section minimum, the Ay-puzzle should also be solved by the
3NF at the same time. However, the puzzle is not solved yet. The concern arises from whether
the 3NF is fundamental or an ad hoc remedy in the three-nucleon problem.

Another problem discussed but remained unsolved is the break-up problem in the case of
“the Space star anomaly”, although 3NF and many different so-called realistic potentials were
used. Also an incomplete differential cross section could not yet be represented by the Faddeev
calculation [30].

On the other hand, the discrepancy in the triton binding energy between the experimental
data is compensated by a three-body force [41]. It was found that the doublet n-d scattering
length (a2nd) is closely related to the three-body force[42]. The closed relation between a2nd and
3NF is reminiscent of the relation between the “n-d threshold” and the 3NF. The n-d threshold
is not clearly defined in the Faddeev equation unfortunately, because the Born term of AGS
equation or the “n-d effective potential” does not diverge at the n-d threshold.

Many attempts are carried out by using realistic potentials and corresponding three-body
forces, relativistic effects, the Coulomb interaction, new degrees of freedom etc. However, those
methods could not satisfactorily explain the above discrepancies.
The three-body force is mainly an isotropic interaction. Furthermore, the renormalization phase
of the Coulomb amplitude is also isotropic. Such isotropic interactions can not affect the P-wave
dominant Ay value, and the effect of the isotropic interaction could work somewhat negatively.
Therefore, we suspect that the energy dependence in the Sagara discrepancy could be closely
related to an “energy-momentum usage or kinematics” in the Faddeev equation.
The second is the three-body bound state which is obtained by solving the two-variable eigen-

equation as the three-body Faddeev equation. However, the two-variable eigen-equation is “not
well defined” mathematically, although the one variable eigen-equation is well defined [43].
Therefore, we should separate the two-variable three-body Faddeev equation into one-variable

two-body LS equations, and a one-variable quasi-two-body multi-channel LS equation. Each of
them gives eigen-values ϵ(2) and ζ by solving one-variable eigen-equations, where we obtain a
separation energy ζ for the reaction (abc) → (bc) + a by the quasi-two-body multi-channel LS
equation. Therefore, the three-body binding energy is obtained by ϵ(3) = ζ + ϵ(2) [44].

This method coincides with the Jacobi-coordinate anti-symmetrized molecular dynamics,
where bound colonies are grown up sequentially from many free-particle groups, by cooling the
system in a timely manner, and not instantaneously as in the usual Faddeev method. [45]-[49].

4.1. Three-body kinematics
Now, let us start with the well-known three-body kinematics for the scattering with a incident

particle and a target. The incident particle has a kinetic energy ELab with the momentum qL,

ELab =
q2L
2m

=
q2L

2(m+Mt)
+ Ecm =

( m

m+Mt

)
ELab + Ecm (29)

E = Ecm − ϵB =
q2

2µ
+
p2

2ν
, (target binding energy = ϵB) (30)



Ecm =
q2

2µ
+
p2

2ν
, (target unbound system), (31)

where m and Mt are the masses of the incident particle and the target. µ denotes the reduced
mass between a pair and the spectator particle, and ν is the reduced mass in the pair, respectively.
Therefore, q is the relative momentum between the pair and the spectator, and p is the relative
momentum in the pair after three-body break-up. Ecm is the three-body center of mass energy,
and ϵB is the target binding energy. Therefore E is the three-body free energy after the deuteron
break-up. If there are no two-body sub-bound states in the intermediate state, then the three-
body total energy Ecm should be used, where one of the three particles, at least, is virtual.

Usually, the Faddeev equation and the AGS equation commonly use the three-body free
energy E in the Green’s function: G0(E) where real-three-particles are transferred in between
two different three-body channels. However, if both of the three-body channels are deuteron
bound states, the spectator particles gain the deuteron binding energy. Therefore, the initial
and the final state’s energies are three-body total energies Ecm. In the Born term of AGS
equation, the Green’s function should be written by G0(Ecm), because all the particle-lines
in the Feynman diagram are “outer-lines” where the energy-momentum should be conserved.
Therefore, a transferred momentum in the Green’s function should be partly virtual.

Furthermore, Ecm = 0 indicates the quasi-two-body threshold in the three-body scattering
which causes a divergence of the Born term. This means that the n-d scattering length is
calculated with such analytic properties as to Ecm = 0, although the original Faddeev equation
has no singularity at this threshold : E = −ϵB. We can call such a critical energy point at
Ecm = 0 the “quasi-two-body threshold”(Q2T) in the three-body system.

On the other hand, in the intermediate three-body lines as the “inner lines” of the Feynman
diagram, we are concerned about two-type of three-body energies: the three-body free energy
E and the three-body total-energy Ecm. Therefore, the Green’s function which is sandwiched
between the bound state and unbound states could be distinguished by G0(E) and G0(Ecm).
Therefore, the Born term of the quasi-two-body equation for N -d system could be written by

q and q′ which are represented by the relative momentum between a pair and the spectator.
We can easily introduce a new Born term by using “an energy-momentum translation” in the

usual Born term,

E → Ecm = E + ϵB (32)

q2/2µ→ q2/2µ = q2/2µ+ ϵB, (33)

p2/2ν = p2/2ν, (34)

we obtain

Zα,β(q, q
′;E) =

gα(p)gβ(p
′)(1− δαβ)(

E + ϵB
)
−

(
q2/2νβ − q′2/2να − qq′x/m+ ϵB

) (35)

=
gα(p)gβ(p

′)(1− δαβ)

Ecm − q2/2νβ − q′2/2να − qq′x/m
= Zα,β(q, q

′;Ecm). (36)

where x = qq′/qq′ and x = qq′/qq′. The propagator becomes,

τγ(E − q′2/2µ) = τγ(Ecm − q′
2
/2µ). (37)

Therefore, the energy-momentum translation does not affect the function itself, however the
integral may be modified due to the prolonged range.



4.2. Non-Efimov but Efimov-like states
One author (S.O.) pointed out that Ecm = 0 in Eq.(36) for NNπ system, generates a singularity-

coincidence between the Born term and the propagator τγ(Ecm−q′2/2µ) [50]. This coincidence is
very similar to the Coulomb scattering in the LS equation where the singularity of the Coulomb
potential and of the propagator occurs simultaneously.
Since our potential singularity in the present case arises at Ecm = 0, then we carried out an
energy average around Ecm = 0 after the Fourier transformation of Eq.(36). Finally, we obtained
V (r) = V0a

2γ+2/[r(r/2+ a)2γ+2]-type potentials with parameters a and γ and a depth constant
V0(<0) for the lowest order term in the local potential expansion of the Born term. Therefore,
we obtained V0(2a)/r

2 potential for γ = −1/2, and Van der Waals potentials V0(2a)
5/r6 for

γ = 3/2, V0(2a)
6/r7 for γ = 2 potentials in the long range region for a ≪ r. While in the

shorter range region r ≪ a, they become Yukawa-type potentials V0e
−r/2a/r, V0e

−5r/2a/r, and
V0e

−6r/2a/r, respectively (see Table 2). Beside the lowest order, the higher order terms affect the
shorter range region adding to the Yukawa-type potential. Therefore, the shorter range region
could be strongly modified from the Yukawa-type potential near the core region, however our
longer range predicted potential can not be changed by the higher order terms.

These potentials are closely related to the mass ratio between a transfer particle and the
parent particles, which can be easily understood by the reason that if the massless particle is
transferred, then the potential will be 1/r which is given by γ = −1. It is interesting that
γ = −1 or a massless particle creates a unique potential V0/r where two-type of potentials for
a≪ r and r ≪ a cross each other (see Table 2).

The above discussion, that two types of potentials, a long range and a short range, arise
from a particle-transfer mechanism, seems to be a universal structure in physics. If there is
a counterargument about our “energy average” method, we can directly solve the three-body
equation with Eq.(36), where we need a special technique to treat it in the neighborhood of the
singular region. Finally, we can also obtain bound states near the E2Q-threshold or the Q2T.

It is well known that 1/r2 potential generates the Efimov-like states, although our case does
not require the infinite number of the two-body scattering length: ascatt ̸= ±∞. However, when
the two-body binding energy becomes zero then 0 = Ecm = E + ϵB → E which is the case
of Efimov states [51][52]. In this sense, our prediction covers the Efimov states. We can say
that our prediction at the Q2T is generalized to other thresholds such as three-body, four-body,
five-body, ..., thresholds [53]. This fact suggests that “observed and unobserved energy levels”
in any many-body system give rise to a long range potential near the threshold. We would like
to suggest that these levels could be a key which can “control the nuclear reactions” where the
long range attractive nuclear interaction could interfere with the Coulomb repulsive force in the
pico-size region [50].

5. Conclusion and Discussion
The reliability of the Coulomb renormalization method is confirmed. However, its application

to the three-body problem is almost impossible, because the screening range is too long. When
Alt’s-type Coulomb renormalization is used, a serious cancelation of significant digits occurs
in the two-body LS and in the three-body Faddeev equations. This cancelation causes the
method to converge, without any warning, to an erroneous value, hence rendering the calculation
unreliable. We present a shorter ranged screened Coulomb potential which can reproduce the
Coulomb phase shift to within 9–10 digits accuracy. Furthermore, the off-shell Coulomb-like
amplitude is proposed by the two-potential method in r-space representation where the off-shell
amplitude can be calculated numerically. By our theory, the Coulomb treatment in the three-
body problem could be enormously improved for the first time in a period of half a century.
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Figure 4. Bound state energy levels for the potentials 1/r (left) and 1/r2 (right) where the
ground state energies are fitted. The vertical unit is arbitrary but the logarithmic unit of the
absolute value is taken.

Table 2. An effective potential V0a
2γ+2/[r(r/2 + a)2γ+2] is illustrated, which is given by an

energy average around the Q2T (or Ecm = 0) with two-parameters a and γ. The potential
properties for the longer and shorter ranges are shown with respect to the parameter γ. V0(<0),
a potential depth which is analytically given by the Born term of the form Eq.(36).

γ short range potential r ≪ a potential long range potential a≪ r

–1 V0/r V0/r V0/r

–1/2 V0e
−r/2a/r V0(2a)/[r(r + 2a)] V0(2a)/r

2

0 V0e
−2r/2a/r V0(2a)

2/[r(r + 2a)2] V0(2a)
2/r3

1/2 V0e
−3r/2a/r V0(2a)

3/[r(r + 2a)3] V0(2a)
3/r4

1 V0e
−4r/2a/r V0(2a)

4/[r(r + 2a)4] V0(2a)
4/r5

3/2 V0e
−5r/2a/r V0(2a)

5/[r(r + 2a)5] V0(2a)
5/r6

2 V0e
−6r/2a/r V0(2a)

6/[r(r + 2a)6] V0(2a)
6/r7

· · · · · · · · · ·
· · · · · · · · · ·

Finally, we would like to emphasize that the method is very general, and it can treat all kinds
of charged particle systems, from the electron-electron to the heavy ion-heavy ion, using the
universal variables.

We reviewed the discrepancy between the experimental data and the usual Faddeev calculated
results. Sagara discrepancy is the most important admonition for this problem. We also added
some other problems that seemed solvable by incorporating the three-body force. We pointed
out that the Q2T is important for improving the Faddeev treatment. One of the examples was
the case of the NNπ system, and we presented a possible existence of a local long-range NN′

potential around Q2T, and NN′ scattering length and πD one [54][53]. This potential results
to some interesting bound states, and to the existence of long-range potentials such as the 1/r2

type and the Van der Waals potential. The 1/r2 potential gives infinite number of bound states
below the Q2T, without Efimov’s requirement for infinite scattering length of two-body sub-



system. Therefore, our theory predicts, in addition to the Efimov states, some other interesting
aspects of nuclear physics.
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