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Abstract. A new method for finding the partial decay-widths for multi-channel resonances
is suggested. It is based on using the Jost matrices. These matrices can be either calculated
(when the multi-channel potential is known) or found by fitting experimental data (when they
are available). In both cases the procedure for obtaining the partial widths is the same and is
simple. It does not require any kind of integration or differentiation. The partial widths sum
up to the total width and the corresponding branching ratios can be found as some algebraic
combinations of the elements of the Jost matrices.

1. Introduction

In the quantum world, practically all scattering processes are multi-channel. This means that a
collision of the quantum systems A and B may result in many different final products (channels)1.
At certain collision energies, such a process goes via the formation of an intermediate quasi-bound
state R which has a finite lifetime. This unstable state is a quantum resonance. It decays into
all open channels with different probabilities,

A+B −→ R −→















A+B ,
C +D ,
E + F ,
etc .

(1)

After its formation, the resonance may randomly decay in any direction, irrespective of where
the original systems A and B came from, i.e in a sense it “forgets” how it was created.
Mathematically, this means that the asymptotic behaviour of the corresponding wave function
involves only the outgoing waves.

The half-life T1/2 = (~/Γ) ln 2 of the resonance R is determined by its total width Γ. If at the
initial instant of time, t = 0, the number of generated resonances is N(0), then it exponentially
diminishes as

N(t) = N(0) exp

(

−Γ

~
t

)

. (2)

For each channel n, there is its own width Γn, which is called partial width. It is easy to
see that the partial widths are fractions of the total width and must add up to Γ. Indeed, for
several concurrent decay processes (1), the function N(t) is a solution of the following differential
equation:

dN

dt
= −Γ1

~
N − Γ2

~
N − · · · = −1

~
(Γ1 + Γ2 + · · · )N , (3)

1 We restrict our consideration to two-body channels.



from where it follows that
Γ = Γ1 + Γ2 + · · · . (4)

There are many different ways of locating resonances (see, for example, Ref. [1]). The most
rigorous and accurate of them are those which are based on the fact that each resonance
corresponds to a pole of the S-matrix at a complex energy,

E = E(r) − i

2
Γ . (5)

All the existing methods are able to find the resonance energy, E(r), and the total width to a
good accuracy. The disagreements among the methods show up when it comes to the partial
widths.

There are two big groups of different approaches to finding the partial widths. The methods
of the first group (see, for, example, Ref. [2]) are based on the ideas similar to the so-called
“Fermi golden rule” which can give the amplitude of the transition from the resonant state |R〉
to a continuum state |ψn〉 in the channel n. Within such an approach, the corresponding partial
width can be found as

Γn = 2π |〈ψn|V |R〉|2 , (6)

where V is the interaction potential. The partial width defined as in Eq. (6), can also be obtained
from the residue of the S-matrix,

S(E) = 1− 2πiT (E) = 1− 2πi
[

V + V (E −H)−1V
]

,

at the pole when E → E . Writing the propagator in the form of the Berggren spectral
expansion [3],

(E −H)−1 =
∑

b

|b〉〈b|
E − Eb

+
∑

q

|q〉〈q|
E − Eq

+ G(E) , (7)

which involves singular terms corresponding to bound states |b〉 and quasi-bound (resonant)
states |q〉 as well as a background term G(E), we see that near a resonant pole, the dominant
contribution to the S-matrix comes from a single term,

〈ψn|S(E)|ψn′〉 −→
E→E

−2πi
〈ψn|V |R〉〈R|V |ψn′〉
E − E(r) + i

2Γ
=

−i
√
ΓnΓn′

E − E(r) +
i

2
Γ
, (8)

and the absolute value of the residue coincides with
√
ΓnΓn′ . It was noted in many publications

(see, for example, Refs. [4, 5]) that within this “golden rule” approach the partial widths obey
Eq. (4) only for narrow resonances, i.e. for short-lived states they do not sum up to the total
width. In Sec. 2 and 4, it is given a possible explanation of such a discrepancy.

The second group unites the methods, where the partial widths are extracted from the
asymptotic behaviour of the resonant state (at large distance r between the decay fragments),

|R〉 −→
r→∞







A1|ψ1〉
A2|ψ2〉

...






. (9)

In this asymptotics the amplitude An determines the probability of finding the system in the
n-th channel and thus is related to Γn (see, for example, Ref. [6]).

Our approach belongs to the second group. The novelty of our method mainly consists
in the way of finding the amplitudes An. We evaluate them using the multi-channel Jost
matrices. These matrices can either be calculated from a given potential or fitted to any available
experimental data. After obtaining the Jost matrices, the partial widths are calculated as simple
algebraic combinations of their matrix-elements. This procedure does not involve any integration
or differentiation and does not require “proper” normalization of the resonance wave function.



2. Partial widths in an experiment

Experimental equipment is always a macroscopic object. Typical distances traveled by the decay
products before they are detected, are many orders of magnitude greater than the size of the
quasi-bound state from which they are emitted. It is therefore possible to describe their motion
towards the detectors using such notions of classical mechanics as trajectories and velocities.

Suppose at time t = 0, the number of generated resonances was N(0). The counters
registering the products of their decays are at a macroscopic distance r. Since the open channels

have different thresholds, E1 < E2 < E3 . . . , the kinetic energies, E
(n)
kin = E − En, of the decay

products are different for the channels. In the channels n and n′ the products move towards
the counters with the speeds vn and vn′ . If vn > vn′ , then a pair of simultaneous signals (for
the channel-products n and n′) means that the particles n were emitted from the resonance at
a later time than the particles n′. The time difference is

∆t =
r

vn′

− r

vn
=
r(vn − vn′)

vnvn′

. (10)

If we deal with short-lived resonances, their number (number of the emitters) during the time
interval ∆t can be significantly reduced. If the particles n′ were emitted at t = 0, then the
intensity of their flux was determined by the number N(0) of the emitters, while for the particles
n (which arrive to the detectors simultaneously with n′) the number of available emitters was
smaller, namely,

N(∆t) = N(0) exp

(

−Γ

~
∆t

)

,

and thus their flux was also reduced. Therefore when trying to obtain the branching
ratios Γn/Γn′ by comparing the particle-fluxes in the channels n and n′, we should put the
corresponding detectors at different distances, rn and rn′ , from the emitters. These distances
can be found as2

rn =
~kn
µn

t , (11)

where kn and µn are the wave number and the reduced mass in the channel n, while t is common
time of flight (from the emitter to the detector) for all the channels. In a theoretical analysis,
this requirement can be fulfilled if we consider the asymptotic behaviour of the resonance wave
function (9) at the corresponding distances (11) for different channels. This is what we do in
Section 4. The idea of using different asymptotic distances for different channels was taken from
Ref. [6].

As was mentioned earlier, in the methods based on the “golden rule” the partial widths exactly
sum up to the total width only for narrow resonances. Within these methods, the greater is
Γ, the larger is the difference between the left and right hand sides of Eq. (4). The above
reasoning may give a possible explanation of such a discrepancy. Indeed, the ratio N(0)/N(∆t)
exponentially grows with Γ. As we see, this error can be exactly compensated by considering
the asymptotics (9) at different distances. But in the integral (6) of the “golden rule” approach
there is no possibility for such a correction.

3. Multi-channel wave function

For the sake of clarity, we consider here a simplified problem, namely, the decay of a resonance
generated in a two-channel system of spinless particles that interact via non-singular short-range
potentials. Its generalization for an arbitrary number of channels and non-zaro spins can be done
easily. The Coulomb forces can also be included without much difficulties.

2 Of course, for fast-moving particles the relativistic kinematics should be used.



The two-channel wave function Ψ has two components, ψ1 and ψ2, that describe the motion
in each of the channels. It is convenient to combine them in a column matrix, Ψ = (ψ1, ψ2)

T ,
then the Schrödinger equation, HΨ = EΨ, can be written in a matrix form. When doing the
standard partial-wave decomposition of this equation, we treat each partial wave as a separate
channel (even if their thresholds are the same). This means that in each of the channels the
three-dimensional wave function can be written as

ψn(E,~r ) =
un(E, r)

r
Yℓnmn

(~̂r ) , (12)

This gives the following system of matrix radial-equations:








∂2r + k21 −
ℓ1(ℓ1 + 1)

r2
0

0 ∂2r + k22 −
ℓ2(ℓ2 + 1)

r2









(

u1

u2

)

=

(

V11 V12

V21 V22

)(

u1

u2

)

, (13)

where the channel momentum ~kn (that determines the relative kinetic energy in the channel
n) is given by

kn =

√

2µn
~2

(E − En) , (14)

with µn and En being the reduced mass and the threshold energy in that channel. The matrix
V is the angular integral,

Vnn′(r) =
2µn
~2

∫

Y ∗
ℓnmn

(~̂r )Unn′(~r )Yℓ′
n′
m′

n′

(~̂r )d~̂r ,

of the three-dimensional potential-matrix U(~r ).
A system of N differential equations of the second order has 2N linearly independent

solutions. In our case N = 2 and thus Eq. (13) has four independent column-solutions. It
is easy to find all of them at large values of r where the (short-range) potential matrix V (r)
vanishes. Without the right-hand side, it becomes the Riccati-Bessel equation. Of course the
choice of the independent solutions is not unique (like with any set of basis vectors). The most
convenient for us is the following choice:

[

h
(+)
ℓ1

(k1r)

0

]

1

,

[

0

h
(+)
ℓ2

(k2r)

]

2

,

[

h
(−)
ℓ1

(k1r)

0

]

3

,

[

0

h
(−)
ℓ2

(k2r)

]

4

, (15)

where h
(±)
ℓ (z) are the Riccati-Hankel functions. These four columns constitute a basis in the

space of the solutions of Eq. (13) at large distances, i.e. any other solution is their linear
combination. The first two of these columns describe the outgoing spherical waves, while the
second pair represents the incoming waves. At large distances, a resonant state may only involve
the outgoing waves, i.e. is a combination of the first two columns of (15). Therefore

(

u1
u2

)

−→
r→∞





A1h
(+)
ℓ1

(k1r)

A2h
(+)
ℓ2

(k2r)



 −→
r→∞

[

A1(−i)ℓ1+1eik1r

A2(−i)ℓ2+1eik2r

]

, (16)

where A1 and A2 are the combination coefficients. The values of them are not arbitrary. They
are determined by the dynamics of the system and by a common factor that follows from the
chosen normalization. As we will see, the normalization does not play any role in calculating
the partial widths, while the relative strengths of the amplitudes An can be found using the Jost
matrices.



4. Partial widths in the theory

Let us assume that the combination coefficients A1 and A2 in Eq. (16) have been found
somehow (a way of finding them is suggested in Sec. 5). Using them, we can obtain the fluxes,

~Jn =
~

2µni

(

ψ∗
n
~∇ψn − ψn

~∇ψ∗
n

)

, of the decay products in each of the channels at large distances.

We are only inerested in the radial component j
(r)
n of vector ~Jn = {j(r)n , j

(θ)
n , j

(ϕ)
n }, which is

normal to a sphere of the radius r. Therefore, out of the three spherical components of the
operator ~∇ = {∂r, (1/r)∂θ, (1/r sin θ)∂ϕ} , we should use only the radial one. The radial flux
for the function (12) with un given by Eq. (16), is

j(r)n =
~Re(kn)

µnr2
|An|2 exp [−2Im(kn)r]Y

∗
ℓnmn

(θ, ϕ)Yℓnmn
(θ, ϕ) .

Then the total flux in the n-th channel through a distant sphere of the radius r is the surface
integral

jn =

∫

j(r)n r2 sin θ dθ dϕ =
~Re(kn)

µn
|An|2 exp [−2Im(kn)r] . (17)

At this point we should recall the discussion given in Section 2 about the choice for each channel
a distances rn which is covered by the decay products during the same time t in all the channels.
For a resonance the momentum ~kn is complex. The speed of the products is determined by its
real part, and thus

rn =
~Re(kn)

µn
t . (18)

At this distance the flux (17) is

jn =
~Re(kn)

µn
|An|2 exp

[

−2Im(kn)
~Re(kn)

µn
t

]

=
~Re(kn)

µn
|An|2 exp

(

Γ

~
t

)

, (19)

where we used the fact that the total width Γ is expressed via the channel momentum as (this
can be seen if the energy (5) is substituted in Eq. (14) instead of E)

Γ = −2~2Re(kn)Im(kn)

µn
for any n . (20)

For all the channels the time-dependent factor in Eq. (19) is the same. Therefore in the ratios
jn/jn′ it is always canceled out. Apparently, such a ratio is equal to the ratio of the corresponding
decay rates, i.e. it is the branching ratio,

Γn

Γn′

=
jn
jn′

=
µn′Re(kn)|An|2
µnRe(kn′)|An′ |2 . (21)

The fluxes given by Eq. (19), were originated from the emitter at the same instant of time in
all the channels. Therefore the channel flux jn for a specific n is a fraction fn of the total flux
originated at that time,

fn =
jn

j1 + j2 + · · · , (22)

and the channel width Γn is the same fraction of the total width,

Γn = fnΓ =
Re(kn)|An|2Γ

N
∑

n′=1

µn
µn′

Re(kn′)|An′ |2
, (23)



where N is the number of open channels. In the wave function (16), all the amplitudes An

have a common normalization factor, which is canceled out in Eq. (23). We therefore avoid the
problem of “proper” normalization of the resonant wave function. What remains is to find a
way of obtaining the channel amplitudes An. This is done in Section 6.

At this point a question arises about Eq. (8), from which it follows that Γn = |Res(Snn, E)|.
This cannot be completely wrong and thus the residue of the diagonal element of the S-matrix
at the resonance pole must somehow be related the the corresponding channel amplitude An.
And indeed such a relation can be found (see, for example, Ref. [7]),

Res(Snn, E) =
i~2kn
µn

(−1)ℓn+1 |An|2 , (24)

from which we obtain
∣

∣

∣

∣

ResSnn
ResSn′n′

∣

∣

∣

∣

=
µn′ |kn| |An|2

µn|kn′ | |An′ |2
. (25)

Comparing this equation with Eq. (21), we see that the above ratio of the residues differs from
the ratio of the corresponding partial widths by a kinematical factor,

Γn

Γn′

=

∣

∣

∣

∣

ResSnn
ResSn′n′

· kn′Re(kn)

knRe(kn′)

∣

∣

∣

∣

. (26)

This kinematical factor, kn′Re(kn)/[knRe(kn′)], stems from the differences in the time of flight
in different channels (discussed in Sec. 2). It becomes noticeable for wide resonances, i.e. when
the difference between |kn| and Re(kn) is significant.

Therefore the numerator of Eq. (8) cannot be merely written as
√
ΓnΓn′ . It should involve

some kinematical factors. These factors may be more complicated than those given in Eq. (26)
because in the ratio some of them may cancel. Such kinematical factors must appear also in the
“golden rule” formula (6) as a result of a proper normalization of the states |R〉 and |ψn〉. As
we see, the factors become insignificant for narrow resonances. This fact perhaps explains why
the “golden rule” produces sufficiently accurate results for them and becomes inaccurate when
Γ increases [4, 5].

5. Jost matrices

We assumed that the potential V is not singular. This means that all of its matrix elements
are regular or (in the worst case) less singular than ∼ r−2 at r = 0. Therefore the most severe
singularity of Eq. (13) is due to the centrifugal terms. However if we multiply the equation by
r2, none of its coefficients remain singular at r = 0. In the theory of differential equations, such
points are called the regular singular-points (see, for example, Ref. [8]).

A system of N second-order differentia equations has 2N linearly independent solutions. At a
regular singular-point, half of these solutions are regular while the other half may diverge at such
a point. Each solution of Eq. (13) is a column. Therefore there are four linearly independent
columns that solve this equation,

(

φ1
φ2

)

1

,

(

φ1
φ2

)

2

,

(

ϕ1

ϕ2

)

1

,

(

ϕ1

ϕ2

)

2

,

where the symbols φ and ϕ are used for the regular and irregular solutions, respectively. These
columns can be combined in two square matrices,

φ =

(

φ11 φ12
φ21 φ22

)

, ϕ =

(

ϕ11 ϕ12

ϕ21 ϕ22

)

,



where the second subscript corresponds to the solution number. Since we are only interested in
a solution that is relevant to physics, we may forget about the matrix ϕ and only consider the
matrix φ whose columns are regular at the point r = 0. These columns form a basis in the space
of regular solutions. This means that the physical solution u is their linear combination,

(

u1
u2

)

=

(

φ1
φ2

)

1

C1 +

(

φ1
φ2

)

2

C2 =

(

φ11C1 + φ12C2

φ21C1 + φ22C2

)

=

(

φ11 φ12
φ21 φ22

)(

C1

C2

)

, (27)

where the combination coefficients C1 and C2 should be chosen in such a way that the function
u has a correct asymptotic behaviour (when r → ∞).

At large distances, where the right-hand side of Eq. (13) vanishes, it still has four linearly
independent solutions, namely, the columns (15). When r → ∞, there is no requirement of
regularity. The four columns (15) constitute a full basis there, and any other solutions is a
linear combination of all of them. In particular, our regular basis basis φ at large distances is
also a combination of them,

(

φ1n

φ2n

)

−→
r→∞





h
(−)
ℓ1

0



 f
(in)
1n +





0

h
(−)
ℓ2



 f
(in)
2n +





h
(+)
ℓ1

0



 f
(out)
1n +





0

h
(+)
ℓ2



 f
(out)
2n , n = 1, 2 ,

where the combination coefficients f
(in/out)
nn′ have two subscripts: the first one shows in which

channel the column (15) has a non-zero element, and the second subscript indicates which of
the columns of the regular matrix is expanded. Combining the regular columns in the square
matrix, we have

(

φ11 φ12

φ21 φ22

)

−→
r→∞





h
(−)
ℓ1
f
(in)
11 h

(−)
ℓ1
f
(in)
12

h
(−)
ℓ2
f
(in)
21 h

(−)
ℓ2
f
(in)
22



+





h
(+)
ℓ1
f
(out)
11 h

(+)
ℓ1
f
(out)
12

h
(+)
ℓ2
f
(out)
21 h

(+)
ℓ2
f
(out)
22





=





h
(−)
ℓ1

0

0 h
(−)
ℓ2









f
(in)
11 f

(in)
12

f
(in)
21 f

(in)
22



+





h
(+)
ℓ1

0

0 h
(+)
ℓ2









f
(out)
11 f

(out)
12

f
(out)
21 f

(out)
22



 .

It is not difficult to see that for an arbitrary N , we have the following asymptotic behaviour of
the matrix of regular solutions,

φ(E, r) −→
r→∞

W (in)(E, r)f (in)(E) +W (out)(E, r)f (out)(E) , (28)

where W (in/out) are the diagonal matrices

W (in/out)(E, r) = diag
{

h
(∓)
ℓ1

(k1r), h
(∓)
ℓ2

(k2r), . . . , h
(∓)
ℓN

(kNr)
}

, (29)

describing the incoming and outgoing multi-channel spherical waves, and the energy-dependent
square matrices f (in/out) composed of the combination coefficients, are the multi-channel Jost
matrices.

6. Asymptotic behaviour of a resonant solution

Consider the physical solution (27) at large distances,

u = φC −→
r→∞

W (in)f (in)C +W (out)f (out)C , (30)



where C is the column-matrix, C = (C1, C2)
T . By definition, a spectral point (corresponding

to either bound or resonant state) is a value of the energy, E = E , for which the wave function
has only the outgoing waves in its asymptotic behaviour. From Eq. (30) it follows that this can
be achieved if





f
(in)
11 f

(in)
12

f
(in)
21 f

(in)
22





(

C1

C2

)

= 0 . (31)

It is a homogeneous linear system of equations for unknown C1 and C2. It has a non-trivial
solution if and only if

det f (in)(E) = 0 . (32)

Complex roots of this equation correspond to the resonance energies (5). After finding such a
root, we can solve the homogeneous system of linear equations (31) for the unknown coefficients

C1 and C2. In the two-channel case this is trivial: C1 is arbitrary and C2 = −C1f
(in)
11 /f

(in)
12 ,

where C1 could (in principle) be fixed from the normalization condition. However, as we will
see, any common normalization factor is canceled out in the ratio (23).

Now, according to Eq. (30), the resonance-state wave function asymptotically behaves as

u(E , r) −→
r→∞

W (out)(E , r)f (out)(E)C (33)

=

[

h
(+)
ℓ1

(k1r) 0

0 h
(+)
ℓ2

(k2r)

]





f
(out)
11 (E) f

(out)
12 (E)

f
(out)
21 (E) f

(out)
22 (E)













C1

−f
(in)
11 (E)
f
(in)
12 (E)

C1









=





A1h
(+)
ℓ1

(k1r)

A2h
(+)
ℓ2

(k2r)



 ,

where A1 and A2,

A1 = C1

[

f
(out)
11 − f

(in)
11 f

(out)
12

f
(in)
12

]

E=E

, A2 = C1

[

f
(out)
21 − f

(in)
11 f

(out)
22

f
(in)
12

]

E=E

, (34)

are the same asymptotic amplitudes of the channels that appear in Eqs. (16) and (23). As
is seen, the common factor C1 can be canceled in Eq. (23). We therefore can put it to unity,
C1 = 1.

7. Finding the Jost matrices

The partial widths Γn can be found by substituting the channel amplitudes (34) into Eq. (23).
Such a calculation requires the knowledge of the Jost matrices f (in)(E) and f (out)(E) at the
resonance energy (5). We can obtain these matrices either using the interaction potential (when
it is known) or by fitting available experimental data.

7.1. Jost matrices from the potential

If the matrix V (r) of the potential is known, the Jost matrices f (in)(E) and f (out)(E) can
be calculated for any complex energy E by a numerical integration of the following system
of differential equations (the derivation of these equations and all the details concerning their
solutions can be found in Refs. [9–12]):

∂rF
(in) = − 1

2i
K−1W (out)V

[

W (in)F (in) +W (out)F (out)
]

, (35)

∂rF
(out) =

1

2i
K−1W (in)V

[

W (in)F (in) +W (out)F (out)
]

, (36)



where the diagonal matrix K = diag {k1, k2, . . . , kN} , consists of the channel momenta, and
the unknown matrices F (in/out)(E, r) asymptotically tend to the Jost matrices,

lim
r→∞

F (in/out)(E, r) = f (in/out)(E) . (37)

Starting from the boundary values of these matrices at r = 0,

F
(in/out)
nn′ (E, 0) = δnn′ , (38)

we can proceed (by numerical integration) to such a distance where the potential vanishes and
thus the right-hand sides of Eqs. (35, 36) become zero. Since at that distance the derivatives
∂rF

(in/out) are zero, the limits (37) are reached.
There is a technical difficulty in solving Eqs. (35, 36) for complex energies. Their solutions

do not converge to the limits (37) along the real radius r. However this difficulty can be easily
overcome if the integration is done along a ray rotated in the complex plane of the coordinate,
r = |r| exp(iθ), with a large enough angle θ (the details can be found in Refs. [9–12]).

7.2. Jost matrices from the data

The resonance energy, total width, and partial widths can be extracted from any available
experimental data by fitting these data with the help of the properly parametrized Jost matrices.
In Ref. [13] it was shown that the Jost matrices have the following analytic structure:

f (in)mn (E) =
kℓn+1
n

kℓm+1
m

amn(E)− ikℓmm kℓn+1
n bmn(E) , (39)

f (out)mn (E) =
kℓn+1
n

kℓm+1
m

amn(E) + ikℓmm kℓn+1
n bmn(E) , (40)

where the energy-dependent matrices a(E) and b(E) are the same for both f (in) and f (out). In
the same Ref. [13] it was established that the matrices a(E) and b(E) are single-valued analytic
functions of the energy, defined on a single one-layer energy plane, i.e. all the complications
stemming from the branch points are isolated in Eqs. (39, 40) via the explicit factors depending
on the channel momenta.

Since the matrices a(E) and b(E) are analytic functions of the variable E, they can be
expanded in the Taylor series,

a(E) =

∞
∑

n=0

(E − E0)
nαn(E0) , b(E) =

∞
∑

n=0

(E − E0)
nβn(E0) , (41)

near an arbitrary point E0 within the domain of their analyticity. Here the expansion coefficients
αn and βn are matrices of the same dimension as a and b. They depend on the choice of the
point E0.

We can approximate the matrices a(E) and b(E) by a finite number of terms in the expansions
(41),

a(E) ≈
M
∑

n=0

(E − E0)
nαn(E0) , b(E) ≈

M
∑

n=0

(E − E0)
nβn(E0) , (42)

and consider the elements of the matrices αn and βn as the fitting parameters. The expansion
central point E0 can be chosen on the real axis somewhere in the middle of the available



experimental data (cross sections, analyzing power, etc.). The data can be fitted using the
S-matrix

S(E) = f (out)(E)
[

f (in)(E)
]−1

, (43)

where the Jost matrices depend of the parameters αn and βn. After finding the optimal values of
these parameters, we can use the same Jost matrices at complex energies within a circle around
E0. In this way the resonance energy (5) can be located and the channel amplitudes (34) for
Eq. (23) can be found.

8. Generalization

In order to make all the derivations clear, we simplified the problem, namely,

• The system under consideration had only two channels (N = 2);

• The spins of the decay fragments were zero;

• The interaction potentials were of a short-range type.

The first of these limitations can be dismissed most easily. For an arbitrary N , the dimensions
of all the matrices are increased accordingly. When solving Eq. (31) for the unknown coefficients
C1, C2, . . . , CN , we can still put C1 = 1 and find all the other of them via the matrix elements
of f (in)(E). And finally, Eqs. (34) are to be replaced with more complicated (but still simple)
expressions for A1, A2, . . . , AN .

Let the decay fragments have non-zero spins. The total angular momentum J as well as its
third component M are conserving. As a result only few partial waves are mixed to each other.
If ~s is the total spin of the interacting particles, then ~J = ~ℓ + ~s, and the maximal number of
coupled partial waves is determined by the triangle condition |J − s| 6 ℓ 6 |J + s|. There is
also the parity conservation law, which allows mixing of either only even or only odd angular
momenta ℓ.

When generalizing the partial-wave expansion (12), we should use the spin-angular functions
(instead of the ordinary spherical harmonics),

YJM
ℓs (~̂r ) =

∑

mµ

CJM
ℓmsµYℓm(~̂r )χsµ , (44)

where χsµ is the spin function depending on the spin s and its third component µ. For each open
channel on the right-hand side of Eq. (1) there is its own set of possible combinations of the pair
(ℓs). Each of these combinations should be considered as a separate channel. For example, if the
first two channels are open, namely, A+B and C+D, with two and three possible combinations
of (ℓs), respectively,

n = 1 A+B : (ℓ1s1)1 , (ℓ2s2)1 ,

n = 2 C +D : (ℓ1s1)2 , (ℓ2s2)2 , (ℓ3s3)2 ,

then we have to solve an effective five-channel problem. Apparently, for these effective channels
all the formulae given in the previous sections remain the same. After obtaining all five partial
widths, we should group them as follows:

n = 1 A+B : Γ1 = Γ(ℓ1s1)1 + Γ(ℓ2s2)1 ,

n = 2 C +D : Γ2 = Γ(ℓ1s1)2 + Γ(ℓ2s2)2 + Γ(ℓ3s3)2 .

The last of our simplifications was the absence of the long-range Coulombic tails of the matrix
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Figure 1. Resonance poles generated by the two-channel model
(46, 47). For the poles shown by the filled circles, the resonance
parameters are given in Table 1.

Table 1. Parameters of the three resonances shown as the filled circles in Fig. 1.

E(r) − i

2
Γ Γ1 Γ2

Γ1

Γ2
method

0.037827 0.00049485 76.442 residues

6.2000− i

2
0.038514 0.038017 0.00049733 76.442 Masui et al.

0.038017 0.00049733 76.442 present work

0.18549 1.5763 0.11768 residues

8.6519− i

2
1.2992 0.13679 1.1624 0.11768 Masui et al.

0.13685 1.1623 0.11773 present work

58.827 2.4282 24.226 residues

9.6786− i

2
50.155 48.166 1.9882 24.226 Masui et al.

48.214 1.9403 24.848 present work

elements of V . If the decay products have non-zero charges, we should replace the Riccati-Hankel

functions h
(±)
ℓ (kr) with the corresponding Coulomb functions,

H
(±)
ℓ (η, kr) = Fℓ(η, kr)∓ iGℓ(η, kr) −→

r→∞
(∓i)ℓ+1 exp {±i [kr − η ln(2kr) + σℓ]} . (45)

It is easy to check that with such a replacement all the formulae for calculating the partial
widths remain the same. As far as the differential equations (35,36) and the analytic structure
(39,40) of the Jost matrices are concerned, their generalizations for the charged particles can
be found in Ref. [12]. In essence, with these generalizations the procedures for finding the Jost
matrices either from a potential or by fitting the data remain the same.

9. Numerical example

In order to test the formulae derived in this paper, let us consider a simple two-channel model
with the potential

U(r) =

(

−1.0 −7.5
−7.5 7.5

)

r2e−r , (46)



given in the units such that ~c = 1. This is the same potential that is used in the well-known
Noro-Taylor model [14]. However, the original model is not sufficiently sensitive to the kinematic
factor in Eq. (26). The reason is that the mass is the same in both channels, µ1 = µ2 = 1, and
their thresholds are very close to each other, E1 = 0, E2 = 0.1. As a result the time of flight is
practically the same in both channels. To avoid this, let us modify the model by using different
masses and a larger difference between the thresholds,

µ1 = 1 , µ2 = 1.1 , E1 = 0 , E2 = 2 . (47)

Some resonance poles found within this modified Noro-Taylor model are shown in Fig. 1. For the
two narrow and one wide resonance (filled circles in Fig. 1), the partial widths were calculated
using four different methods. In the first method it was assumed that Eq. (8) is correct and
thus Γn = |Res(Snn, E)|. The second method was suggested by Masui et al. in Ref. [15], where
the authors avoided the problem of normalization in Eq. (8) by taking the ratio of the widths
as Γ1/Γ2 = ResS11/ResS22 and using the condition Γ1+Γ2 = Γ. They however did not include
the kinematical factor that is present in Eq. (26). Within the third method, the partial widths
were calculated using Eq. (26) with this factor included. And lastly, the fourth method was
based on Eq. (23) where the asymptotic amplitudes An we calculated as is described in Sec. 7.1.

The results of the calculations are given in Table 1. It turned out that the third and the
fourth methods produced identical numbers. For each resonance, they therefore are represented
in the table by a common line denoted as “present work”.

10. Summary and conclusion

It is shown how the partial widths of a multi-channel resonance can be found using the Jost
matrices that determine the asymptotic behaviour of the resonance wave function. After the
Jost matrices are obtained, the suggested method does not require any additional integration
or differentiation. A normalization of the resonance wave function is not needed. The partial
widths are calculated as certain fractions of the total width and thus they exactly sum up to it.
These fractions are obtained as the corresponding ratios of the channel-fluxes to the total flux
of the decay products. When calculating such ratios, the channel fluxes emitted at the same
instant of time are considered.

The proposed method can be used for the analysis of various non-relativistic quantum
resonance phenomena in nuclear, atomic, and molecular physics. Depending on the type of
the task, the Jost matrices needed for finding the partial widths, can either be calculated from
a given potential, or found approximately by fitting available experimental data.
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