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Abstract. The fact that in most of the fits to the hadronic spectra the Tsallis q parameter is
close to 1, enables us to expand the Tsallis distribution in the Taylor’s series of (q − 1). Tsallis
thermodynamics has been studied with the help of this expansion and the particle spectra have
been fitted. Also, the effect of the inclusion of the collective flow in Tsallis distribution has been
investigated.

1. Introduction

The transverse momentum distributions of hadrons at high energies is very often described by the
Tsallis distribution [1]. The PHENIX and STAR collaborations [2, 3] at the Relativistic Heavy
Ion Collider (RHIC) at BNL and by the ALICE, ATLAS and CMS collaborations [4, 5, 6, 7, 8]
at the Large Hadron Collider (LHC) at CERN have made extensive use of this non-extensive
distribution. The Tsallis distribution has been very successful in explaining the experimental
transverse momentum distribution, longitudinal momentum fraction distribution as well as the
rapidity distribution of hadrons from e+e− as well as p-p collisions [9, 10, 11, 12, 13, 14, 15].
Here we use a thermodynamically consistent form of the Tsallis distribution, described in detail
in [16, 17].

The relevant thermodynamic quantities can be written as integrals over the following distribution
function:

f =

[
1 + (q − 1)

E − µ
T

]− 1
q−1

. (1)

Although the q and the T parameter were shown to be consistent for all the particle species
[15, 17], the studies [18, 19] leave ample room to scrutinize this conclusion.



2. Review of Tsallis thermodynamics and its application to high-energy
physics

The entropy density, s, particle number density, n, energy density, ε, and the pressure, P in
Tsallis thermodynamics are given by [17],

s = −g
∫

d3p

(2π)3
[f qlnqf − f ] , n = g

∫
d3p

(2π)3
f q,

ε = g

∫
d3p

(2π)3
E f q, P = g

∫
d3p

(2π)3
p2

3E
f q. (2)

where g is the degeneracy factor. The lnq function appearing in Eq. 2 is often referred to as q
logarithm and is defined by

lnq(x) ≡ x1−q − 1

1− q
.

The first and second laws of thermodynamics lead to the following two differential
relations:

dε = T ds+ µ dn, (3)

dP = s dT + n dµ. (4)

where, s = S/V and n = N/V are the entropy and particle number densities, respectively (V is
the volume ).
It is seen that if we use f q instead of f to define the thermodynamic variables, the above
equations satisfy the thermodynamic consistency conditions which require that the following
relations are satisfied:

T =
∂ε

∂s

∣∣∣∣
n
, µ =

∂ε

∂n

∣∣∣∣
s
, n =

∂P

∂µ

∣∣∣∣
T

, s =
∂P

∂T

∣∣∣∣
µ
. (5)

The first equality in Eq. 5, in particular, shows that the variable T appearing in Eq. 1 can indeed
be identified as a thermodynamic temperature and is more than just another parameter. It is
straightforward to show that these relations are indeed satisfied [17].

Based on the above expressions the particle distribution can be rewritten, using variables
appropriate for high-energy physics as

dN

dpTdy
=

gV

(2π)2
pTmT

(
1 + (q − 1)

mT

T

)− q
q−1

(6)

at chemical potential µ = 0 and rapidity y = 0.

3. Taylor expansion of the Tsallis distribution and thermodynamic variables

In all fits to the experimental data (transverse momentum spectra, for example) the value of q
is very close to 1 and hence, for analytical simplicity, we can expand the Tsallis distribution in
a Taylor’s series of (q − 1). The Taylor’s expansion is given by (up to oder (q − 1)2) [20]:

[
1 + (q − 1)

E − µ
T

]− q
q−1

' e−
E−µ
T

{
1 + (q − 1)

1

2

E − µ
T

(
−2 +

E − µ
T

)
+

(q − 1)2

2!

1

12

[
E − µ
T

]2 [
24− 20

E − µ
T

+ 3

(
E − µ
T

)2
]
} (7)



The thermodynamic variables keeping up to O(q − 1) of the expansion in Eq. 7 are calculated
below:

3.1. Number density

The particle density in Tsallis thermodynamics is given to first order in (q− 1) by the following
expression:

n ≈ nB + (q − 1)n1 (8)

where nB is the standard Boltzmann result for the particle density:

nB =
g

2π2
e
µ
T T 3a2K2(a), (9)

with a ≡ m/T , and the first order expression in q − 1 is given by

n1 =
ge

µ
T T 3

4π2

[
−6a2K2(a)− 2a3K1(a)− 4a2bK2(a) + 3a3K3(a) + a4K2(a) + a2b2K2(a)

−2a3bK1(a)
]
. (10)

where Kn are the modified Bessel’s function of second kind.

3.2. Energy density

ε ≈ εB + (q − 1)ε1; εB =
ge

µ
T T 4

2π2
(3a2K2(a) + a3K1(a))

ε1 =
ge

µ
T T 4

4π2

[
9a3K3(a) + 4a4K2(a) + a5K1(a)

+2b
(
3a2K2(a) + a3K1(a)− 3a3K3(a) + a4K2(a)

)
b2
(
3a2K2(a) + a3K1(a)

)]
. (11)

3.3. Pressure

Finally, the pressure is given by

P ≈ PB + (q − 1)P 1; PB =
ge

µ
T T 4a2K2(a)

2π2

P 1 =
ge

µ
T T 4

4π2

[
a4K2(a) + 3a3K3(a)− 2a3bK3(a) + a2b2K2(a) + 2a2bK2(a)

]
. (12)

4. Description of the experimental data

In Fig. 1 we show fits to the transverse momentum distribution of π+ in p-p collisions at 900
GeV. For the Tsallis distribution (solid line) the parameters T = 70.8 MeV, q = 1.1474. The
volume parameter V corresponds to a spherical radius of 4.81 fm. For the Boltzmann distribution
(dashed line) the parameters T = 150.2 MeV, while the radius used to determine the volume
was fixed at a value of 2.65 fm. For the fit using the Boltzmann distribution and the first order
term in (q − 1) (dashed-dotted line) the values are T = 138.4 MeV, q = 1.035 while the radius
is given by 2.80 fm. In the last case corresponding to Boltzmann plus first and second orders in
(q−1) (dotted line) one has T = 121.2 MeV, q = 1.065 and a radius of 3.09 fm. As is well-known
and evident, the fit using the Tsallis distribution is very good.
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Figure 1. Fits to the normalized differential

yields of π+ as measured by the ALICE collabora-

tion in p−p collisions at
√
s= 0.9 TeV [5] fitted with

the Tsallis (solid line) and Boltzmann distributions

(dashed line). Also shown are fits with the Tsal-

lis distribution keeping terms to first (dash-dotted

line) and second order in (q− 1) (dotted line). The

lower part of the figure shows the difference between

model (M) and experiment (E) normalized to the

model (M) values.
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Figure 2. Fits to the normalized differential π−

yields as measured by the ALICE collaboration in

(0− 5)% Pb-Pb collisions at
√
sNN = 2.76 TeV [6]

fitted with the Tsallis (solid line) and Boltzmann

distributions (dashed line). Also shown are fits with

the Tsallis distribution keeping terms to first (dash-

dotted line) and second order in (q−1) (dotted line).

The lower part of the figure shows the difference

between model (M) and experiment (E) normalized

to the model (M) values.

In Fig. 2 we show fits to the normalized differential π− yields in (0 − 5)% Pb-Pb collisions at√
sNN = 2.76 TeV as measured by the ALICE collaboration [6] with the Tsallis (solid line) and

Boltzmann distributions (dashed line). Fits with the Tsallis distribution keeping terms to first
order (dash-dotted line) and second order in (q − 1) (dotted line) are also shown. The lower
part of the figure shows the difference between the Tsallis distribution (M) and experiment (E).
It is clear that the best fit is achieved with the full Tsallis distribution, whereas, using the
Boltzmann distribution the description is not good. Successive corrections in (q − 1) improve
the description. There is a clear deviation at very low transverse momentum (below 0.5 GeV)
and also at higher values above 2.75 GeV.

5. Inclusion of Flow to First Order in (q − 1)

With a view to see whether the inclusion of flow could improve the description of the transverse
momentum distributions obtained in Pb-Pb collisions, we have included a constant flow velocity,
v. We use the following ansatz (in cylindrical polar coordinates) for introducing flow inside our
calculations:

pµ = (mT coshy, pT cosφ, pT sinφ, mT sinhy) (13)

uµ = (γcoshζ, γvcosα, γvsinα, γsinhζ) (14)

where (ζ)y is the (space-time)rapidity of particles (fluid-element) and v is the velocity of fluid.
Now, to include flow inside the Tsallis distribution, we replace E → pµuµ. The dot product
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Figure 3. Fits to the normalized differential π− yields as measured by the ALICE collaboration in

(0 − 5)% Pb-Pb collisions at
√
sNN = 2.76 TeV [6]. The fit with the Tsallis distribution including flow

keeping terms to first order in (q− 1) (dashed line). The flow velocity is fixed at v = 0.609, with T = 146

MeV, q = 1.030 and the radius of the volume is R = 29.8 fm. The solid line is the Tsallis distribution

without flow as given in Fig. 2. The lower part of the figure shows the difference between model (M),

i.e. Tsallis with flow up to first order in (q− 1), and experiment (E) normalized to the model (M) values.

then becomes,
pµuµ = γmT cosh(y − ζ)− γvpT cos(φ− α) (15)

Now putting Eq. 15 in a Taylor’s expansion of Eq. 6 up to O(q− 1) and integrating over φ and
ζ, for space-like freeze-out surfaces, the invariant yield is given by the following formula

1

pT

dN

dpTdy
=

gV

(2π)2

{
2T [rI0(s)K1(r)− sI1(s)K0(r)]− (q − 1)Tr2I0(s)[K0(r) +K2(r)]

+4(q − 1) TrsI1(s)K1(r)− (q − 1)Ts2K0(r)[I0(s) + I2(s)]

+
(q − 1)

4
Tr3I0(s)[K3(r) + 3K1(r)]−

3(q − 1)

2
Tr2s[K2(r) +K0(r)]I1(s)

+
3(q − 1)

2
Ts2r[I0(s) + I2(s)]K1(r)−

(q − 1)

4
Ts3[I3(s) + 3I1(s)]K0(r)

}
(16)

where

r ≡ γmT

T
; s ≡ γvpT

T
. (17)

In(s) and Kn(r) are the modified Bessel functions of the first and second kind. In this formula,
the freeze-out surface has been considered to be space-like and so the integration over the freeze-
out surface turns out to be trivial. For a more detailed treatment of the freeze-out surface in
this context, readers are referred to Ref. [21].



The comparison between model and experiment is quite good with notable deviations at small
values of the transverse momentum pT and again above values of 2.5 GeV (see Fig. 3).
These could easily be attributed to the coarse way of treating transverse flow. More detailed
investigations have been carried out in [18].

6. Summary and Conclusion

Fits to the particle spectra using the Taylor’s expansion are limited to certain ranges of transverse
momentum. This may be attributed to the fact that there are certain constraints on the values
q, E and T take for these expansions to be valid. Hence, we need to carry out more rigorous
treatments to find out exact analytical forms of the Tsallis thermodynamic variables.
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[19] Biró T S, Pürcsell G and Ürmössy K 2009 Eur. Phys. J. A 40 325
[20] Bhattacharyya T, Cleymans J, Khuntia A, Pareek P and Sahoo R 2016 Eur. Phys. J A 52 30
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