SAIP2016

Contribution ID: 220

Type: Poster Presentation

Calculation of air density through measurements of falling spheres

Wednesday, 6 July 2016 16:10 (1h 50m)

Abstract content
 (Max 300 words)
Formatting &
Special chars

We present experimental results from ball drop experiments to infer air density. Using a quadcopter drone to raise the ball to over 1000 ft, measurements of the velocity of the ball are made to infer the mass density. Using the measured terminal velocity enables an accurate measurement of the air density using falling spheres with known cross section and aerodynamic drag coefficient. Comparison with air density measurements using the measured meteorological parameters (temperature, pressure and humidity) will validate the results.

Apply to be
 considered for a student
 award (Yes / No)?

Yes

Level for award
 (Hons, MSc,
 PhD, N/A)?

Hons

Main supervisor (name and email)
and his / her institution

Mark Moldwin University of Michigan

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

No

Please indicate whether
this abstract may be
published online
(Yes / No)

Yes

Primary author: Mr MCCAUGHNA, Andrew (University of Michigan)

Co-authors: Prof. MOLDWIN, Mark (University of Michigan); Prof. KOSCH, Michael (SANSA)
Presenter: Mr MCCAUGHNA, Andrew (University of Michigan)
Session Classification: Poster Session (2)

Track Classification: Track D2 - Space Science