SAIP2016

Contribution ID: 253

Type: Poster Presentation

Magnetic and Kondo behaviour in Ce8Pd24(Al1-xSnx)

Tuesday, 5 July 2016 16:10 (1h 50m)

Abstract content
 (Max 300 words)
Formatting &
Special chars

Ce8Pd24(Al1-xSnx), (0 < x < 1) has been studied by magnetic susceptibility, \square (T), magnetization, M(μ 0H), electrical resistivity, ρ (T), thermoelectric power, S(T), and thermal conductivity, λ (T), measurements. All investigated compositions crystallize in a cubic AuCu3 - type crystal structure with space group Pm-3m (No. 221). 🛛 (T) data at high temperature follows the paramagnetic Curie – Weiss relation with negative Weiss temperatures θp and effective magnetic moments μ eff close to the value of 2.54 μ B expected for the free Ce3+ - ion. The low temperature dc 🛛 (T) data indicate an antiferromagnetic (AFM) anomaly for all compositions between $0 \le x \le 1$, associated with a Néel temperature ranging from TN = 4.3 K to 6.9 K between the two end compounds. Field – cooling (FC) and zero – field – cooling (ZFC) ⊠(T) data indicates spin – glass behaviour at Al concentrated alloys. $\rho(T)$ data is dominated by coherent Kondo lattice scattering for alloys in the concentration range $0 \le x \le 0.5$ and by crystal –electric field (CEF) effect for alloys with $x \ge 0.7$. At low temperature $\rho(T)$ data indicate a steep decrease at TN associated with magnetic phase transition also observed in the $\square(T)$ results. Below TN, $\rho(T)$ is described by a spin – wave dispersion relation. At low temperatures, S(T) data measurements indicate an AFM transition at TN corresponding to the $\mathbb{Z}(T)$ and $\rho(T)$ results. The high temperature S(T) data is described by the phenomenological resonance model giving the Kondo temperature TK and the characteristic temperature TCEF associated with crystal - electric field effect. $\lambda(T)$ increase linearly with temperatures from low T. The reduced Lorentz number, L/L0 increase upon cooling and exhibit maxima which decrease in magnitude with increase x, while the figure of merit (ZT=S2T/ ρ) exhibit maxima and minima upon cooling and the magnitude at room temperature decreases with x.

Apply to be
 considered for a student
 award (Yes / No)?

No

Level for award
 (Hons, MSc,
 PhD, N/A)?

N/A

Main supervisor (name and email)
and his / her institution

N/A

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Please indicate whether
this abstract may be
published online
(Yes / No)

Yes

Primary author: Prof. TCHOULA TCHOKONTE, Moise Bertin (Department of Physics, University of the Western Cape)

Co-authors: Mr BASHIR, Aiman (University of the Western Cape); Prof. STRYDOM, Andre Michael (University of Johannesburg); Prof. KACZOROWSKI, Dariuzs (Institute of Low Temperature and Structure Research, Polish Academiy of Sciences)

Presenter: Prof. TCHOULA TCHOKONTE, Moise Bertin (Department of Physics, University of the Western Cape)

Session Classification: Poster Session (1)

Track Classification: Track A - Division for Physics of Condensed Matter and Materials

Yes