Magnetic and Kondo behaviour in Ce8Pd24(Al1-xSnx)

Tuesday, 5 fuly 2016 16:10 (1h 50m)

Abstract content
 \ (Max 300 words)
Formatting \&
Special chars

Ce8Pd24(Al1-xSnx), $(0 \leq x \leq 1)$ has been studied by magnetic susceptibility, $\boxtimes(T)$, magnetization,
$\mathrm{M}(\mu 0 \mathrm{H})$, electrical resistivity, $\rho(\mathrm{T})$, thermoelectric power, $\mathrm{S}(\mathrm{T})$, and thermal conductivity, $\lambda(\mathrm{T})$, measurements. All investigated compositions crystallize in a cubic AuCu 3 - type crystal structure with space group $\mathrm{Pm}-3 \mathrm{~m}$ (No. 221). $\boxtimes(T)$ data at high temperature follows the paramagnetic Curie - Weiss relation with negative Weiss temperatures $\theta \mathrm{p}$ and effective magnetic moments μ eff close to the value of $2.54 \mu \mathrm{~B}$ expected for the free Ce3+ - ion. The low temperature dc $\boxtimes(T)$ data indicate an antiferromagnetic (AFM) anomaly for all compositions between $0 \leq \mathrm{x} \leq 1$, associated with a Néel temperature ranging from $\mathrm{TN}=4.3 \mathrm{~K}$ to 6.9 K between the two end compounds. Field - cooling (FC) and zero - field - cooling (ZFC) 区(T) data indicates spin - glass behaviour at Al concentrated alloys. $\rho(\mathrm{T})$ data is dominated by coherent Kondo lattice scattering for alloys in the concentration range $0 \leq x \leq 0.5$ and by crystal -electric field (CEF) effect for alloys with $x \geq 0.7$. At low temperature $\rho(\mathrm{T})$ data indicate a steep decrease at TN associated with magnetic phase transition also observed in the $\boxtimes(T)$ results. Below $T N, \rho(T)$ is described by a spin - wave dispersion relation. At low temperatures, $S(T)$ data measurements indicate an AFM transition at TN corresponding to the $\mathbb{X}(\mathrm{T})$ and $\rho(\mathrm{T})$ results. The high temperature $\mathrm{S}(\mathrm{T})$ data is described by the phenomenological resonance model giving the Kondo temperature TK and the characteristic temperature TCEF associated with crystal - electric field effect. $\lambda(\mathrm{T})$ increase linearly with temperatures from low T. The reduced Lorentz number, L/L0 increase upon cooling and exhibit maxima which decrease in magnitude with increase x , while the figure of merit ($\mathrm{ZT}=\mathrm{S} 2 \mathrm{~T} / \rho$) exhibit maxima and minima upon cooling and the magnitude at room temperature decreases with x

Apply to be
 considered for a student
 \ award (Yes / No)?

No

Level for award
\ (Hons, MSc,
 \ PhD, N/A)?
N/A

Main supervisor (name and email)
and his / her institution N/A

Would you like to
 submit a short paper
 for the Conference
Proceedings (Yes / No)?

Please indicate whether
this abstract may be
published online $<$ br>(Yes / No)

Yes

Primary author: Prof. TCHOULA TCHOKONTE, Moise Bertin (Department of Physics, University of the Western Cape)

Co-authors: Mr BASHIR, Aiman (University of the Western Cape); Prof. STRYDOM, Andre Michael (University of Johannesburg); Prof. KACZOROWSKI, Dariuzs (Institute of Low Temperature and Structure Research, Polish Academiy of Sciences)

Presenter: Prof. TCHOULA TCHOKONTE, Moise Bertin (Department of Physics, University of the Western Cape)

Session Classification: Poster Session (1)

Track Classification: Track A - Division for Physics of Condensed Matter and Materials

