SAIP2016 Contribution ID: 9 Type: Poster Presentation # Ab – initio study of transition metals impurities and stability of complexes in Ge. Tuesday, 5 July 2016 16:10 (1h 50m) ## Abstract content
 (Max 300 words)
 dry-Formatting &
 &class="blank">Formatting &class="blan By means of density functional theory (DFT), we present <i>ab-initio</i> calculation of T(T: Cr, Mo, W, Mn and Fe) vacancy-interstitial complexes (T_{Ge}-V_{nGe}I_T, for n=1,2 and 3) in Ge. The projector augmented wave (PAW) pseudopotentials within the generalized gradient approximation (GGA) was used for all the calculations. The structural properties and formation energies of T_{Ge}-V_{nGe}I_T for the neutral charge state were obtained. Our results show that under favourable energetic condition, vacancy-interstitial complex T_{Ge}-V_{nGe}I_T will form with low formation energy. The formation energy show that the T_{Ge}-V_{nGe}I_T is more energetically favourable for n=1 and 2 than n=3. The stability of the vacancy-interstitial complexes were obtained from their binding energies. For all T, the binding energies of the T_{Ge}-V_{Ge}I_T are positive and stable. Except for the W and Mo, for the T_{Ge}-V_{ZGe}I_T and T_{Ge}-V_{Ge}I_T the binding energies for T are negative and the defect complexes are likely to dissociate into smaller fragments. ### Apply to be
br> considered for a student
 award (Yes / No)? yes Level for award
 - (Hons, MSc,
 - PhD, N/A)? PhD #### Main supervisor (name and email)
 -br>and his / her institution Walter E. Meyer wmeyer@up.ac.za Univeristy of Pretoria Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)? Yes ## Please indicate whether
-br>this abstract may be
-published online
-br>(Yes / No) Yes **Primary author:** Mr IGUMBOR, Emmanuel (University of Pretoria) Co-author: Dr MEYER, Walter (University of Pretoria) **Presenter:** Mr IGUMBOR, Emmanuel (University of Pretoria) **Session Classification:** Poster Session (1) Track Classification: Track A - Division for Physics of Condensed Matter and Materials