
SAIP2016

Contribution ID: 206

Type: Oral Presentation

Effect of calcination on structural and magnetic properties of nickel chromite

Friday, 8 July 2016 11:50 (20 minutes)

Abstract content
 (Max 300 words)
Formatting &
Special chars

Spinel nickel chromite demonstrates ferrimagnetic ordering below <i>T</i>_C = 74 K, and it undergoes several temperature dependent structural and magnetic phase transitions [1]. Recently, it has shown the exchange bias effect, attributed to an anisotropic exchange interaction between the ferrimagnetic and antiferromagnetic components of magnetic moment [2]. These results motivated a detailed investigation into the high temperature structural phase transitions of this material, as well as the effect of calcination on magnetic properties, that are reported here. <i>In-situ</i> high temperature XRD studies of the as synthesized nickel chromite samples measured in air and He atmospheres suggests the phase formation takes place around 800 to 900 °C. The cubic structure of nickel chromite is retained up to almost 1100 °C, contrary to the reported tetragonal phase observed at such elevated temperature [3]. Upon cooling no change in crystal structure is observed. Nickel chromite samples calcined at 900 °C and 1100 °C, respectively, have been used for microstructural and magnetic studies. The particles are found to have a broad size distribution. <i>T</i>_C is obtained to be 86 K for the sample calcined at 900 °C, whereas it is reduced to 74 K for the other. The magnetic transition observed at <i>T</i>_S = 31 K marking the onset of ordering of antiferromagnetic component, remain unchanged for both the samples. The spontaneous magnetization values for samples calcined at 900 °C and 1100 °C are found to be lesser than reported values [1,4] and they do not show exchange bias effect.

References

[1] Ishibashi H, Yasumi T 2007 J. Magn. Magn. Mater 310 e610

[2] Barman J et al. 2015 J. Magn. Magn. Mater. 385 93

[3] Ptak M et al. 2013 J. Sol. Stat. Chem. 201 270

[4] Mufti N et al. 2010 J. Phys.:Condens. Matter 22 075902

Apply to be
 considered for a student
 award (Yes / No)?

No

Level for award
 (Hons, MSc,
 PhD, N/A)?

N/A

Main supervisor (name and email)
and his / her institution

Prof. A R E Prinsloo, alettap@uj.ac.za, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Please indicate whether
this abstract may be
published online
(Yes / No)

Yes

Primary author: Dr MOHANTY, Pankaj (University of Johannesburg)

Co-authors: Prof. PRINSLOO, Aletta (University of Johannesburg); Dr SHEPPARD, Charles (Department of Physics, University of Johannesburg)

Presenter: Dr MOHANTY, Pankaj (University of Johannesburg)

Session Classification: Division for Physics of Condensed Matter and Materials (1)

Track Classification: Track A - Division for Physics of Condensed Matter and Materials