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Introduction
QCD Phase Diagram

Figure : QCD phase diagram
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Introduction
QCD at Finite Temperature

Temperature dependence of the energy density

Figure : Temperature dependence of the energy density by Lattice QCD
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Introduction
Physics at RHIC

At RHIC we study the dynamics of the QGP in two different limits:

Strongly coupled limit

• It is non-perturbative approach.

• Gives a good estimate for the dynamics of the particle at low p⊥.

Weakly coupled limit

• It is perturbative approach, based on the asymptotic freedom of
QCD.

• It describes the physics associated with high p⊥.

Why weakly coupled limit?
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The Lagrangian of The System

Consider the Lagrangian of an electron scattered with a fixed point
charge

L = −1

4
(Fµν)2 + ψ

(
i /∂ −m

)
ψ − e ψγµψAµ + e JµA

µ

Where

Jµ = V µδ(~x − ~vx0)

V µ = (1, 0)µ
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Feynman Rules of The Leading Term

Section 2.1. The Amplitude of an Electron Interacting with a Classical Current Page 5

where J̃ν(q) is the Fourier transform of the current Jν(x). Using equation (2.1.2) in (2.1.18), we find

〈p′, s′| iT |p, s〉 ≈ ie2

(p′ − p)2 ū
s′(p′)γ0us(p)J̃0(p′ − p) . (2.1.19)

However J0(x) = δ(3)(~x), so the Fourier transform of the current is given by

J̃0(p′ − p) =

∫
d4xJ0(x)eix·(p

′−p) = 2πδ(Ep′ − Ep) . (2.1.20)

The transition matrix elements then become

〈p′, s′| iT |p, s〉 ≈ ie2

(p′ − p)2 ū
s′(p′)γ0us(p) 2πδ(Ep′ − Ep) .

≈ 2πδ(Ep′ − Ep) · iM0 , (2.1.21)

where iM is the scattering amplitude of the leading term which is given by

iM0 =
ie2

(p′ − p)2 ū
s′(p′)γ0us(p) . (2.1.22)

The Feynman rules of the leading term are shown in Figure 2.1.

For each vertex: µ = −ieγµ

For each internal photon:
−→
q

µ ν =
−igµν
q2+iε

For each incoming external photon:
−→
q

µ = εµ(q)

For each outgoing external photon:
−→
q

µ = ε∗µ(q)

For each incoming external fermion:
p

= u(p)

For each outgoing external fermion:
p

= ū(p)

For each external source: = −ie V µ

Figure 2.1: Feynman rules of the leading term
Figure : Feynman rules of an electron scattered with a classical potential V
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The Leading Order of the differential Cross Section

Using feynman rules for leading term

iM0 =
p p′

q = p′ − p

=
i e2

q2
us
′
(p′) γ0 us(p)

The cross section of the leading term will be
(
dσ

dΩ

)

0

=
1

32π2

∑

s,s′
|M0|2 =

2α2

q4
(2E 2 − p · p′)
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Next-to-Leading Order O(α3)
NLO Diagrams

+ +

+ +
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Divergences in the NLO diagrams

The Ultra-violet divergences

• Due to loop integrals.

The Infra-red divergences

• Emission or absorption of massless photons.

The collinear divergences

• Emission or absorption of a massless photons collinearly with a
massless electron.
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UV divergence cancellation
Renormalization

We follow the renormalization steps:

1. We define the Lagrangian in terms of the bare parameters

L0 = −1

4
(Fµν0 )

2
+ ψ0

(
i /∂ −m0

)
ψ0 − e0 ψγ

µψA0µ + e0 J0µA
µ
0

2. We renormalize the bare fields (ψ0 and Aµ0 ) and the bare
parameters (e0 and m0) by defining the renormalization parameters
Zψ, ZA, Ze and Zm

ψ0 = Z
1
2
ψψ

Aµ0 = Z
1
2
AA

µ

Zψm0 = Zmm

e0ZψZ
1
2
A = Zee
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Renormalization Procedure Cont...

3. We expand the renormalization patrameters in terms of the
counter terms

Zψ = 1 + δψ

ZA = 1 + δA

Ze = 1 + δe

Zm = 1 + δm

4. We rewrite the Lagrangian in terms of the Renormalized fields and
parameters (ψ, A, m and e and the counter terms)

L = −1

4
(Fµν)2 + ψ

(
i /∂ −m

)
ψ − e ψγµψAµ + e JµA

µ

− 1

4
δA (Fµν)2 + ψ

(
iδψ /∂ −m δm

)
ψ − e δe ψγ

µψAµ + e JµA
µ
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Renormalization
Feynman Rules of The Renormalized Lagrangian

Section 3.2. Vacuum Polarization Page 10

(a) D = 0 (b) D = 1 (c) D = 2

Figure 3.1: Divergent diagrams in QED

µ ν =
−igµν
q2+iε

⇒ µ ν = −i(gµνq2 − qµqν) δA

µ ν = i
/p−m+iε ⇒ µ ν = i(/p δψ −mδm)

= -ieγµ ⇒ = −ieγµδe

Figure 3.2: Feynman rules for the renormalized QED

3.2 Vacuum Polarization

The amplitude for the vacuum polarization is given by

iMp =
p p′

q

k + q

q

k

+
p p′

= ūs
′
(p′)
(
− ieγµ

)
us(p)Dµα(q)

(
iΠαβ(q)

)
Dβν(q)

(
− iej̃ν(q)

)
, (3.2.1)

Figure : Feynamn rules of the renormalized QED
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Renormalization
Renormalization Tools

• Dimensional Regularization to regularize the U.V divergences,
which requires Introducing the mass scale µ.

∫
d4k

(2π)4
→
∫

ddk

(2π)d
⇒ e → e µ

4−d
2

• Mass Regularization (mγ , m) to regularize both IR and collinear
divergences.

−igµν
k2

→ −igµν
k2 + m2

γ

• MS Renormalization Scheme.

Why did we use MS ?
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On-shell VS.MS

On-shell renormalization scheme:

• We use the renormalization conditions to tame the UV divergence.

• The physical quantities are the renormalized ones.

• The differential cross section diverges as we send the mass of the
electron (me) to be zero.

MS renormalization scheme:

• We choose the counter terms such that it removes the
(1ε + log(4π)− γE ) term.

• The renormalized parameters are not necessarily the physical ones
and the value of the residue is no longer one.

• The differential cross section is finite as we send the electron mass
(me) to be zero.
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Mass and Residue Corrections
Full Electron Propagator

The Fourier transform of the two point correlation function of the
electron self energy is given by

∫
d4x 〈Ω|T (ψ(x)ψ̄(0)) |Ω〉 e ip·x =

i

/p −m − Σ(/p)
.

This means that the pole is shifted by Σ(/p), so the renormalized mass
is not the physical mass and the residue of this pole is no longer one.

15 of 21



The Physical Mass and Residue Correction

The physical mass can be given by the position of the pole
(
/p −m − Σ(/p)

)∣∣
/p=me

= 0

Which implies

me = m

[
1 +

α

4π

(
4 + 3 log

(
µ2

m2

))
+ O(α2)

]

The inverse of the residue is given by

R−1 =
d

d/p

(
/p −m − Σ(/p)

)∣∣
/p=me

= 1− α

4π

[
2 log

(
m2

m2
γ

)
− log

(
µ2

m2

)
− 4

]
+O(α2)

We should multiply the amplitude by R1/2 for each external leg,
which means that we multiply the differential cross section by R2.
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IR and collinear divergences cancellation
BN Vs. KLN

There are two main theorems describing the cancellation of the IR
and collinear divergences:

The Bloch-Nordsiek theorem

• One should sum over the emitted soft photons (i.e Photons with
energy less than the experimental energy resolution (∆)) to cancel
the IR divergences!

Kinoshita-Lee-Neunberg (KLN) theorem

• One should sum over both emitted and absorbed hard photons
within a cone of an angle less than the experimental angular
resolution (δ) to get rid of the collinear divergences!

17 of 21



The NLO correction to the differential Cross Section

The final formula will be

(
dσ

dΩ

)
=

1

32π2

∑

s,s′

(
R2|M0|2 +M∗0MV +M∗VM0 +M∗0MP

+M∗pM0 +M∗0MBO +M∗BOM0 + |MB |2
)

=

(
dσ

dΩ

)

0

{
1 +

α

π

[
log

(
∆2

E 2

)(
1− log

(
δ2E 2

−q2
))

−3

2
log

(
δ2E 2

−q2
)

+ log

(
δ2E 2

m2

)(
2∆

E
− ∆2

2E 2

)]

−π
2

3
+

5

36

}
+
πα3E

p Q q2
(p − Q) + O(α4) .
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Comments

There are two main comments on the previous results:

• There are two collinear divergences (ignored by LN paper) that
have not been cancelled yet!

• We used a combination between the BN and KLN theorems! which
provide a question about the consistency of such a treatment.

There are some suggestions to overcome the problems states above
respectively:

• We will check the calculations of the soft bremsstrahlung emission
beyond the Eikonal approximation.

• We will check including the disconnected diagrams for the initial
state soft bremsstrahlung divergences cancellation to stay in the
spirit of the KLN theorem.
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Conclusion

• All U.V, I.R and the collinear divergences has been cancelled by
using MS renormalization scheme, the BN and KLN theorems.

• the treatment of applying both BN and KLN theorems separately
to get rid of the IR and collinear divergences is inconsistent.

• We use the more general theorem (KLN), however Including the
absorption of soft photons will double the IR divergences. So a
further work needs to be done to get rid of these extra infinities.
One suggestion is to look at the disconnected diagrams.

• After the cancellation of all the infinities we expect a result for the
differential cross section to be finite and valid up to arbitrary large
momentum exchange.

• We have used a very simple and powerful renormalization scheme
which can be used for the QCD calculations as we deal with the
light quarks (nearly zero mass).
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Thank you!
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