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Abstract. Since its launch in 2008, the Fermi Large Area Telescope (LAT) has detected over
200 γ-ray pulsars above 100 MeV. This population of pulsars is characterised by a rich diversity
of light curve morphologies. Researchers have been using both the radio and γ-ray light curves
to constrain the inclination and observer angles for each of these pulsars. At first, this was done
using a by-eye technique and later via statistical approaches. We have also developed two novel
statistical approaches that place the radio and γ-ray data on equal footing despite their disparate
relative flux errors. We chose eleven pulsars from the Second Fermi Pulsar Catalog, both old
and young, and applied these new techniques as well as the by-eye technique to constrain their
geometric parameters using standard pulsar models. We present first results on our comparison
of the best-fit parameters yielded by each of the aforementioned techniques. This will assist us
in determining the utility of our new statistical approaches, and gauge the overlap of the best-fit
parameters (plus errors) from each of the different methods. Such a statistical fitting approach
will provide the means for further pulsar magnetospheric model development using light curve
data.

1. Introduction
Prior to the launch of the Large Area Telescope (LAT) aboard the Fermi mission in June 2008,
fewer than ten pulsars had been detected in the γ-ray domain [1]. Since then the LAT has
discovered1 more than 200 new γ-ray pulsars, enabling multi-wavelength pulsar studies for the
first time [2].

The simultaneous use of radio and γ-ray observations has, however, typically been
complicated by the comparatively low γ-ray flux through the telescope, resulting in very
disparate relative uncertainties on the respective data sets. This disparity renders traditional
goodness-of-fit techniques ineffective, since the radio light curves (LCs) dominate every fit,
leading some researchers to prefer so-called “by-eye methods” when attempting to jointly fit
modelled LCs to observations in both domains (e.g., [3]). Other studies (e.g., [4,5]) have sought
to address this problem by artificially inflating the errors on the radio data such that the radio

1 https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+Gamma-
Ray+Pulsars
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and γ-ray observations carry roughly equal weight in determining the optimal fit to modelled
data. These fitting methods have had limited success.

More recently, a method has been proposed for rendering the respective data sets comparable
for the purposes of finding best-fit model parameters in both domains simultaneously [6]. The
aim of this paper is to apply this method to eleven pulsars selected from the Second Fermi Pulsar
Catalog [2] and compare the results to those found by other studies [4,5] as well as to what is
found using by-eye fitting. Furthermore, a variation on the aforementioned fitting method is
introduced here and applied to the same pulsars. Conclusions are drawn as to the utility of each
of these fitting techniques.

2. Geometric pulsar models
This study uses an idealised picture of pulsars with vacuum retarded dipole magnetic field
structures [7]. Here γ-ray emission is considered to originate from so-called acceleration gaps in
the pulsar’s magnetosphere where the density of the corotating plasma falls below the Goldreich-
Julian charge density [8]. We use two geometric models that postulate the location of these
acceleration gaps: the outer gap (OG, [9]) and two-pole caustic (TPC, [10]) models. For radio
emission an empirical hollow-cone model [11] is assumed.

LCs are plots of a pulsar’s intensity per unit solid angle. The tilt angle α and the observer
angle ζ measured with respect to the pulsar’s rotational axis are taken as free parameters, so
that model LCs can be constructed using any viable (α,ζ)-pair; the fitting methods presented
in this paper therefore aim to determine which combination of α and ζ best reproduce observed
data in both radio and γ rays concurrently.

3. Fitting methods
The first approach used in this paper towards finding best-fit (α, ζ) combinations is simple by-
eye fitting of modelled LCs onto observed data. For any given pulsar, modelled LCs for each
parameter pair, and in both the γ-ray and radio domains, are successively constructed and
superimposed on the pulsar’s observed data. We make a qualitative decision as to whether or
not the experimental data are satisfactorily reproduced by the LC realisation for a given (α, ζ)
pair, and an inclusion contour is drawn for each pulsar. This is done twice per pulsar, once
using each of the OG and TPC geometric models discussed in the previous section.

The best-fit parameters are taken to be in the centre of the contour, with the errors on this
estimate comprising a square encompassing all of the contour. Note that in cases where two or
more disconnected closed contours appear on the map, we study the LCs for the centre of each
contour and choose the best fit among these.

This fitting method is, of course, rather subjective: applying the same method twice for the
same pulsar using the same geometric model will produce two slightly differing answers. This is
especially true when there are multiple (α, ζ) pairs plausibly replicating the observed data for
a single pulsar. As such, this fitting method is not seen as an attempt at constraining pulsar
geometries in and of itself, but rather as being a sanity check, or a basis for (qualitatively)
judging the accuracy of more rigorous methods: if a statistical approach produces an answer far
out of line with what by-eye fitting delivers, the former result is cast into doubt.

Considering the limitations of the by-eye fitting method, a more rigorous alternative is desired.
This study uses a modified version of Pearson’s χ2 test statistic, defined by the equation

χ2 =
nbins∑
i=1

(
Ei −Oi

Ui

)2

, (1)

where Ei, Oi, and Ui refer to the modelled (expected) intensity, observed intensity, and
uncertainty on the observed intensity in the ith bin of nbins bins of the LC respectively.
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Ideally the minimum value of χ2 in either model would be approximately equal to the number
of degrees of freedom, Ndof = nbins− nparameters− 1, specifying a good match between modelled
and observed data. However, this rarely occurs for the models used in this study, with the
minimum test statistic often being far larger than Ndof . This indicates that the models are still
somewhat rough approximations of the real phenomena. In this light, in order for constraints to
be drawn, X must be normalised such that its minimum value is Ndof . This approach works well
for single-wavelength data sets, but breaks down when trying to find minima in two wavelengths
simultaneously. In our case, the relative errors on the observed γ-ray data are much larger than
they are on the radio data, so that the values of χ2 are much smaller for the γ-ray domain than
for the radio domain. Simply adding the test statistics of the γ rays and radio waves together
therefore creates a combined χ2 map which is very much radio-dominated.

Other studies [4,5] circumvented the problem of vastly differing χ2 values on the γ-ray and
radio datasets by artificially inflating the errors on the radio observations to match those of the
γ-ray observations, both for MSPs [4] and for young and middle-aged pulsars with longer periods
of rotation [5]. While this method invariably performs better than simple addition of the maps,
different pulsars often require different degrees of radio error inflation, and in some cases these
errors even need to be decreased to match the wide range of errors for different pulsar γ-ray
LCs.

This study aims to consistently combine the respective χ2 maps such that each dataset is
considered on equal footing. Two methods are used to achieve this, the first being a scaling
approach [6] and the second being a simple multiplication approach. In the χ2 scaling method
the dynamic ranges of the χ2 maps for each waveband are equalised before adding them, forcing
each domain to carry equal weight in the determination of the best concurrent fit. For a more
detailed description of this approach, see Ref. [6]. At this stage no confidence contours have
been implemented, as this is under investigation using a Monte-Carlo approach. The parameter
constraints found using this method therefore do not yet have associated errors. The second
approach followed by this study is simply multiplying the two χ2 maps together for each (α, ζ)
combination without any scaling. This method does not have confidence intervals yet either.

4. Results
We applied the three fitting methods described in the previous section to eleven pulsars selected
from the Second Fermi Catalog [2]. Table 1 compares the parameter constraints obtained for the
three fitting methods used in this study to what other studies [3,4] found for the same pulsars
using the TPC model, while Table 2 makes the same comparison for the OG model. All angles
are given in degrees.

Table 1. Best (α, ζ) fits — TPC model

Pulsar Independent studies [4,5] By-eye fitting χ2 scaling χ2 multiplying

J0030+0451 (74±2, 55+3
−1) (75±8, 59±6) (56,73) (45,62)

J0205+6449 (75±2, 86±2) (75±6, 86±4) (77,84) (78,84)
J0437−4715 (35±1, 64±1) (30±1, 65±1) (29,65) (26,62)
J1124−5916 (84±2, 89±2) (79±9, 84±6) (87,75) (78,84)
J1231−1411 (26+3

−4, 69± 1) (47±8, 75±3) (33,71) (45,72)
J1410−6132 (19+2

−4, 6±2) (20±3, 8±3) (10,20) (10,20)
J1420−6048 (52±2, 53±2) (61±4, 53±5) (60,45) (60,45)
J1513−5908 (50±2 ,54±2) (50±8, 40±8) (55,46) (55,46)
J1614−2230 (80+8

−20, 80+6
−4) (85±5, 65±5) (36,74) (48,83)

J1833−1034 (55±2, 75±2) (54±8, 78±4) (53,76) (50,79)
J2229+6114 (42±2, 55±2) (53±5, 36±6) (46,60) (45,59)
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Table 2. Best (α, ζ) fits — OG model

Pulsar Independent studies [4,5] By-eye fitting χ2 scaling χ2 multiplying

J0030+0451 (88+1
−2, 68±1) (85±2, 67±2) (85,68) (56,73)

J0205+6449 (73±2, 90±2) (75±5, 86±4) (80,87) (80,87)
J0437−4715 (76±1, 46±1) (62±3, 35±5) (27,63) (27,63)
J1124−5916 (83±2, 88±2) (70±7, 86±4) (71,88) (70,88)
J1231−1411 (88±1, 67±1) (82±4, 59±5) (33,71) (45,72)
J1410−6132 (87±2, 76±2) (4±3, 7±3) (47,58) (56,84)
J1420−6048 (55±2, 57±2) (57±7, 58±8) (62,45) (58,56)
J1513−5908 (60±2,59±2) (57±4, 44±5) (56,48) (56,48)
J1614−2230 (64+8

−20, 88
+2
−5) (55±7, 86±4) (37,75) (37,75)

J1833−1034 (65±2, 87±2) (58±9, 79±4) (87,65) (87,57)
J2229+6114 (75±2, 55±2) (66±2, 41±2) (64,51) (63,50)

As an example, we plot the best-fit LCs as predicted by each fitting method superimposed
on the observed Fermi data for PSR J0030+0451 in Figure 1.

Figure 1. Best-fit LCs found using each fitting method for PSR J0030+0451. The observed Fermi

LC is in dark blue, while the predicted LC found by Ref. [4] is in red, and the LCs as predicted using

the by-eye fitting, χ2 scaling (statistical method 1), and χ2 multiplying (statistical method 2) techniques

are in green, cyan, and pink, respectively. The constraint pair found using each method is indicated in

square brackets in the legend.

One important effect discernible from Tables 1 and 2 is that different fitting methods often
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Figure 2. The constraints on α found independently via statistical techniques vs. those found in this

study. For reference, a straight 45◦ line is shown corresponding to a perfect match of the constraint we

found on α with that found independently.

produce inverted constraint pairs, i.e., if α and ζ were switched, the methods would be in much
better accordance. This is expected, since LC predictions are very similar for similar values of
the so-called impact angle, |β| = |ζ − α|, given the model assumption of symmetric emission
from both magnetic poles.

In Figure 2 we plot the α constraints found in this work using by-eye fitting, χ2 scaling, and
χ2 multiplying against those found by independent studies.

5. Conclusions
We relay the results of applying the bye-eye fitting method to the eleven pulsars in question
in the third column of Tables 1 and 2. Considering Table 1 first, we find that the constraints
found in this study using the TPC model overlap with those found in the independent studies
in five cases. In no case would inverting the (α, ζ)-pair have led to concurrence between the two
methods. Looking at Table 2, using the OG model, four pulsars have an overlap of intervals.
Again, inverting pairs would not have produced another match. However, the by-eye confidence
intervals are fairly arbitrary, and a more lenient fitter might find significantly more overlap
between these two fitting methods. The best-fit LCs found using this method also indicate
that, for the most part, the by-eye fitting method is able to replicate observed LCs well, at
least superficially. Taking into account the difficulties with subjectivity inherent to the by-eye
fitting method, in the light of these comparisons this method seems to be a suitable basis for
qualitatively judging the applicability of other, more rigorous fitting methods.

This study’s second approach to LC fitting was the χ2 scaling method, developed by Ref. [6],
the results of which can be found in the fourth column of Tables 1 and 2. In the TPC model,
only two constraints found by this method fall inside the confidence intervals of those found by
the independent studies, although PSR J0030+0451 also qualifies if its α and ζ are switched.
There are four overlaps between the by-eye fitting and χ2 scaling constraints, and a further
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three if pair inversion is taken into account. Considering the OG model constraints, there is
just one overlap (or two with pair inversion) between the χ2 scaling constraints and those of the
independent studies; there are three overlaps with the by-eye fitting method. These comparisons
are complicated by the fact that confidence intervals have not yet been implemented for the
statistical methods. Even conservative errors would lead to quite a few more overlaps.

It seems clear that the χ2 scaling fitting method is somewhat hit-and-miss. Some observations
appear to be very well fit by this method, such as PSR J1420−6048 using the OG model, while
others are quite poorly fit, such as PSR J2229+6114 in the TPC model.

For a blind statistical technique, the χ2 scaling method seems to do an adequate fitting job,
although it is still some way off being a rigorous alternative to by-eye fitting. It is not clear that
the constraints found using this method match those found using the by-eye method significantly
more frequently than those found using the artificial error inflation technique.

The results of the third fitting approach, novel to this paper, are presented in the fifth
column in each of the tables of the previous section. Regarding the constraints found using the
TPC model, as in Table 1, there are no pulsars for which the constraints found using the χ2

multiplication technique is included in the confidence intervals of those found by the independent
studies. There are five pulsars for which this method’s constraints fall inside the errors of those
obtained using by-eye fitting, and another if pair inversion is taken into account. Table 2 shows
that in the OG model case there is one pulsar for which the χ2 multiplying method constraints
overlap with the independent studies’ constraints (two with pair inversion), and one overlap
with the by-eye fitting method’s constraints.

Again, the constraints found using this method do not agree with the by-eye fitting method
significantly better than those found using error inflation do. This fact is reflected in the best-
fit LCs plotted using this method: the degree to which observed LCs are reproduced by this
method is quite variable, sometimes qualitatively better and at other times worse than what is
produced by error inflation. In many cases this fitting method produces best fits identical or
at least close to that of the χ2 scaling method. In this regard it is unclear which of these two
statistical approaches produce better fits.

The most obvious avenue for the improvement best-fit LCs would be to employ more intricate
geometrical models, although developing and implementing such models would be a long and
arduous process. In the meantime, future study might focus on finding confidence contours
in the χ2 fitting techniques, or on developing new methods of combining the γ-ray and radio
datasets altogether, perhaps with a different test statistic.
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