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Abstract. Nearly all measurements to determine diffusion coefficients in solids are 
performed using either isochronal or isothermal measurements.  These are usually done 
using large discrete steps in the annealing temperature.  In certain diffusion systems 
more than one diffusion mechanism may exist in different temperature regimes.  The 
transition temperature between these can be missed when using large temperature steps 
for annealing.   This paper derives the necessary equations for diffusivity measurements 
where the temperature is ramped linearly and a composition-depth profile is 
simultaneously performed in situ.  This yields the diffusion coefficient at small 
temperature intervals over the whole temperature range.   

1.  Introduction 

In general, nearly all measurements to determine diffusion coefficients in solids are performed 
using either isochronal or isothermal measurements [1, 2].  Usually, these are done with fairly 
large discrete steps in temperature, with 100 °C or 50 °C steps being the norm.  The diffusion 
coefficient, at a particular temperature, depends primarily on the microstructure of the substrate, 
with the type of impurity (i.e. the diffusion species) being of secondary order.  When a phase 
change occurs in the substrate material or when a chemical reaction occurs between the 
diffusion species and the substrate, the diffusion mechanism usually undergoes a discrete 
change with a corresponding change in the diffusion coefficient as a function of temperature.  
When either of these occurs, the large steps in temperature can result in one missing the 
transition from one diffusion mechanism to another.  Consequently, it is often highly desirable 
to perform in situ diffusion measurements during the heating cycle. 

Theron [3, 4] developed a method for dealing with the diffusion in the case of a linear 
increase in temperature and real time analysis.  He set up a general rate equation and made the 
assumption that this rate variable had an Arrhenius temperature behaviour.   This resulted in 
differential equations for standard diffusion limited kinetics and Nernst-Einstein diffusion 
limited kinetics.  These differential equations are solvable in terms of the Exponential Integral 
for those two cases. 
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In this paper we also assume a temperature which is ramped linearly while doing 
simultaneously non-destructive depth profiling (typically with RBS) to determine the diffusion 
of a diluted species in a homogeneous substrate at small temperature intervals.  Analytical 
equations for such diffusivity measurements are derived. 

2.  Theory 
A key assumption in our theory is that the diffusion coefficient D has an Arrhenius behaviour 
with respect to the absolute temperature T, i.e. 
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where E is the activation energy and kB is the Boltzmann constant [1,2].  This form allows one 
to calculate the diffusivity D at any temperature; with good accuracy within the temperature 
range for which (1) was determined, and with reduced accuracy outside this temperature 
regime.  The assumption (1) is also commonly assumed in diffusion studies. 

The one-dimensional time-dependent Fick diffusion equation is given by  
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     In solutions to this equation, the diffusion coefficient D usually appears together with the 
time t as the factor Dt [2,5].  To illustrate this, consider an initial profile of a semi-infinite layer 
given by 

N(x, 0) = N0   for x < x0   
N(x, 0) = 0     for x > x0        (3) 

The solution is given by [2] 
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The Complementary Error Function in (4) is given by [6] 
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The original profile (3) and the diffused profile (4) for model values for the depth scale x 
and diffusion coefficient D, are illustrated in Figure 1.   In practice, the depth profile data of the 
diffused semi-infinite layer which is annealed for a known time t at a specific temperature T is 
fitted to equation (4) to give a value for D.  

In the different (depending on the boundary values) solutions to (2), the D is taken as a 
constant value, i.e. it is then a solution of the Fick diffusion equation at a specific temperature 
T.  In the case of a linear increase in temperature with time t there is also a corresponding 
increase in the D values – cf. equation (1).   The cumulative effect of increasing the temperature 
on the factor Dt can be approximated by the limit of a Riemann integral of infinitesimal small 
increases in t.   Thus, the factor Dt becomes  dttD )( . 
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Figure 1.  Diffusion of a semi-infinite layer with original 
profile given by (3) for two different times indicated in  
the figure.  

 
Using assumption (1), i.e. that over this (limited) temperature range the diffusion coefficient 

has an Arrhenius behaviour, the integral becomes 
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where ta in the two integral limits is the time at which a measurement is taken, and the absolute 
temperature is given by the linear function tTT b  , where Tb is the temperature at which 
the ramping started and α is the heating rate.  Making two transformations, and integrating by 
parts give  
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where the Exponential Integral function E1(x) is defined as [6]  
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with an asymptotic expansion (i.e. x >> 1) given by 
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Using the first two terms in (9) and after some algebra, one finds that (7) reduces to 
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where aba tTT  . Because the diffusion coefficient at the start of the ramping temperature 
(typically room temperature of 300 K) is extremely small, the last term is approximately zero.  
Thus 
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With the notation  
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equation (11) can be written as  
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Taking the logarithm and substituting the Arrhenius form of D  
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     Thus from a plot of  












 
2ln

aT
  against 

aT
1 , the slope yields the activation energy E and 

from the intercept D0 can be obtained, from which the diffusion coefficient D can be calculated 
via (1).   
     The increment between successive Ta values depends primarily on the time taken to perform 
a depth analysis of the diffusing impurity.  In practice, for RBS analysis this may result in the 
increment being of the order of 1 or 2 K.  This is small enough to pinpoint the temperature at 
which the activation energy changes.  Since the activation energy E of diffusion represents the 
average energy needed by a diffusing atom to either pass over or tunnel through the potential 
barrier between the two semi-equilibrium positions of the atom, a change in the value of E 
represents two different diffusion mechanisms operating.  Information on the exact temperature 
can provide valuable reference data for DFT (density functional theory) calculation on diffusion 
traps in a substrate [8, 9].    
 
 

3.  Conclusions 

Equations are derived to extract diffusion coefficients at very small temperature intervals from 
in situ real-time non-destructive analysis of an impurity profile in a substrate heated to have a 
linear increase in temperature of the substrate as a function for time.  A key assumption in this 

Proceedings of SAIP2016

SA Institute of Physics ISBN: 978-0-620-77094-1 29



derivation is that the diffusion coefficient over the whole temperature range has an Arrhenius 
dependence on temperature.  The initial temperature must start at a temperature where the 
diffusion is negligibly low.  The solution is given in terms of the Exponential Integral function.  
Taking the first two terms of the asymptotic power expansion of this function yields an 
analytical equation from which the diffusion coefficient D at small temperature intervals can 
be determined.  
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