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Abstract. The potential distribution between a grid and two plates is an electrostatic problem 
already solved for MultiWire detectors used in Nuclear Physics, where theoretical expressions 
are obtained assuming linear charge distributions. In this paper, the accuracy of the line model 
is investigated close to the wires, using both analytical and numerical approaches. In the 
symmetric case where the grid is at equal distances between two grounded plates, it is shown 
that the error can be modeled using a quadrupole charge. After solving the electrostatic 
problem for the asymmetric case, a larger discrepancy is found, and is interpreted as a 
consequence of a dipole charge on the electrode. Two different models of this dipole are then 
implemented, leading to an accurate theoretical expression of the potential. 

1.  Introduction 
The potential distribution created by a conductive grid is a classical electrostatic problem solved 
several decades ago [1]. In engineering, its solution is used to model systems containing a grid, e.g. 
electrostatic precipitators [2]. Another application is the MultiWire Proportional Counter (MWPC) 
invented in the ‘70s for Nuclear Physics [3]. This case has been intensively investigated, the analytical 
expression of the potential distribution being derived from a line model of the electrodes [4], thus 
considering wires as lines instead of cylinders.  

The validity of this assumption is discussed in this paper. As a reference for precise determination, 
Laplace’s equation is solved numerically using Comsol Multiphysics®, a commercial Finite Element 
Model (FEM) package.  

Recent literature on this topic puts a focus on the numerical approach [5], particularly useful when 
space charge effects are considered [6]. However, accurate analytical expressions are always necessary 
to design a prototype containing conductive grids, justifying the investigation presented herein. 
Moreover, while expressions given in [4] only apply when the grid is placed between two grounded 
plates, our results are readily usable for an arbitrary configuration. 

The paper is organized as follows: in section 3, a classical formula of the symmetric case (i.e. grid 
at equal distance between grounded plates) is recalled, and a first study of the potential on the 
conductor surface is done using both theoretical and numerical approaches. Then the general case, or 
asymmetric, is considered in section 4: after solving the electrostatic problem, it is seen that a dipole 
behavior of higher strength characterizes the line expression used for MWPC. In order to cope with 
this small but not negligible error, two models of this dipole are then presented and discussed. 

2.  Geometry 
The geometry under investigation is described in figure 1. 



 
 
 
 
 
 

 

 

 
Figure 1. Cross-section of the grid 
with the two parallel plates. 

 Figure 2. Linear superposition used in the 
appendix. 

 
Electrodes are situated on the line 0=y  at kax =  where k is an integer. These wires are cylinders 
out-of-the plane x-y with radius 0r . The distance between two parallel wires is a. Their charge per unit 
length, λ , depends on the potentials V1, V2 and VG applied to the conductors. 

To solve this 2D electrostatic problem it is convenient to use the complex-valued variable  

 
a
zπξ =  (1) 

with jyxz += , as well as the complex electrostatic potential )(zΦ  such as [ ])(Re),( zyxV Φ= . 
Throughout this paper, mm1=a  and μm5.120 =r . 

3.  Symmetric case 

3.1.  General results 
In the symmetric case, the grid is located midway between the two grounded plates, thus LLL == 21  
and 021 ==VV . The expression of the complex potential can be found in [4], where unit linear 
charge and CGS units were adopted. With a linear charge λ  and MKS units, this potential is 
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In our case, mm10=L , so q = 2.7×10-55, a negligible value that leads to the following approximation 
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The potential on the wire surface is )( 0
θj

line erzV =  and can be expressed using the fact that 

ar <<0 ; the first order approximation ξξ ≅sin  yields a uniform distribution, i.e. lineV  does not 

depend on θ . This constant is the potential GV  applied to the conductor: 
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3.2.  High order approximation on the wire 
The third order approximation of ξsin  in equation (3) actually leads to  
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The corresponding physical potential on the wire is the real part of this, and can be written as  
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The second term of equation (6) can be interpreted as the contribution of an electric quadrupole [7], 
and finds its origin in the fact that equipotential lines derived from equation (3) are not exactly circles. 

3.3.  Numerical validation using FEM 
The commercial FEM-based package Comsol Multiphysics ® is used to solve the Laplace´s equation 
in the shaded domain represented in figure 1. Boundary conditions are VG = 10 V on the grid, 0 V on 
the plates, and the zero charge condition 0. =nE 

 is implemented on the lateral faces. In order to 
improve the resolution, the finer mesh is selected, and 4th order shape functions are used during 
discretization. Finally, the numerical problem with 81×103 degrees of freedom is solved in 3 s CPU 
time (dual core I7, 32 Go RAM) using a direct solver. The accuracy of the numerical analysis is 10-9. 

The difference between the almost exact numerical FEM solution and the approximate line model 
is plotted in figure 3. 

 

  

Figure 3. Surface plot of lineFEM VV − . Close view around the wire for a symmetric case. 



 
 
 
 
 
 

This plot illustrates the quadrupole behaviour previously explained in section 3.2. The amplitude 
V105.6 5

0
−×=QuadV  of this quadrupole is well predicted by equation (6). 

4.  Asymmetric case 
The asymmetric case, where the grid at potential VG is not situated midway between two parallel plates 
at potentials V1 and V2, is now presented.  

4.1.  General equations 
As mentioned in [4], equation (3) is the expression for an isolated grid and the constant term enables a 
matching on the wire. Because the field created by an isolated grid is symmetric, this kind of 
expansion is not relevant for the asymmetric case. To solve this electrostatic problem, generic methods 
such as superposition, images and matrix of capacitance can be used [3]. Developments are done in the 
appendix, leading to the following expression of the complex potential created by this line distribution 
(placed at 0=y ) under the influence of the plates 
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where the induced chargesλ  and Pσ  are given in equations (A4-5) as functions of GV , 1V , and 2V . 

4.2.  Approximation on the wire 
When approximating equation (7) on the wire, one finds that  
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Using the expression of the potential GV  on the grid given in equation (A3), the real potential becomes 
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Similar to the symmetric case, the line model presents a quadrupole contribution θ2cos0 Quadquad VV =  
with the same amplitude seen in equation (6) for the symmetric case. Moreover, it is interesting to 
notice that a dipole component  
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It can be noted that for the symmetric case, equations (A4-5) lead to 
aP 2
λσ −= , meaning that 

equation (9) reduces to equation (6).  

4.3.  FEM results 
The studied asymmetric configuration is characterized by mm101 =L , mm52 =L , V51 −=V , 

V102 =V , and V2=GV . Figure 4 shows the difference between the field V obtained by FEM and 
the theoretical one associated to a line distribution, i.e. equation (7). 



 
 
 
 
 
 

 

Figure 4. General and close view around the wire of lineFEM VV −  for an asymmetric case. 

Figure 4 exhibits a very small difference between FEMV  and lineV  over the computational domain, 
except close to the wire where a dipole behaviour is noted. The maximum error is actually equal to 

V104.1 2
0

−×=DipV , which is in agreement with equation (10). 
It is noticeable that this error is much larger than the one obtained for the symmetric case. It is 

therefore of interest to investigate this case and model this dipole behaviour. 

4.4.  Dipole modelling 
It is well-known [1] that a grounded cylindrical conductor placed in an external electric field extE


 

behaves like an electric dipole. In our case yextext uEE 
−=  for 0<y . Solving the Laplace’s equation 

for this classical problem gives θsin
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dipole is described by 
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With this expression of the distribution created by the dipole, it becomes possible to eliminate the 
artefact of the variation of the potential on the wire. This artefact is due to the use of equation (7) that 
does not describe the wire geometry perfectly (it should be cylinder, not line). To check the validity of 
this model’s dipole referred to as Model A, or dipA, the difference between )( dipAline VV −  and V 
obtained by FEM is plotted in figure 5.  

Compared to figure 4, figure 5 illustrates the improvement of the analytical expression but an error 
of 2×10-4 V still remains. It is also noticed that the error on the wire features a θ2cos0QuadV  variation, 
in agreement with our findings. 



 
 
 
 
 
 

4.5.  Improved dipole modelling 
In spite of the good results found in the previous section, a discrepancy can be noted in figure 5 at 
large distances from the wire. In order to improve the modelling, the technique presented in [8] is 
adopted. First, the expression of the complex potential of a line distribution (with distributed charge 
λ  placed at 0z ) is recalled: 
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A line dipole constituted of two opposite distributions placed at 00 jyz ±  is then represented by 
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For 0yz >> , the following approximation holds  
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where λ00 2 jyp =  is purely imaginary as the dipole is on the y-axis.  

It has been noted in [8] that the distribution dΦ  of the line dipole is proportional to 
dz

d lΦ
− , a 

property also reported in [9]. Generalizing to our case, one first considers the line model of the grid 
described by expression (A1); then the line dipole of the grid is obtained through differentiation:  
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Adopting this expression, the approximation of the complex potential on the wire is 
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Equation (18) expresses the dipole contribution when the conducting cylinder is placed in the non-
homogeneous external field created by the grid between the plates.  



 
 
 
 
 
 

In order to check the validity of this model, the surface plot of the difference between FEMV  and 
)( dipBline VV −  is given in figure 6. 

  

 

 
Figure 5. Model A of the dipole 
for an asymmetric case: surface 
plot of )( dipAlineFEM VVV −− . 

 Figure 6. Model B of the dipole for an asymmetric case. 
)( dipBlineFEM VVV −−  along the line x = 0. Inset: 

General view over the computational domain. 

The comparison between figures 5 and 6 shows that both models A and B yield an error with same 
order of magnitude. However, the error of model B features a linear variation due to the fact that 

( ) 1cotRe ± → ∞→yj ξ . Model B can then be improved by subtracting a linear term corrdipV _  of 
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. The residual error is shown in figure 7.  

 

Figure 7. General and close view around the wire of )( _ corrdipdipBlineFEM VVVV −−−  for an 
asymmetric case 

This new model has improved the theoretical determination that now leads to an error of 3×10-5 V. 



 
 
 
 
 
 

5.  Conclusion 
The potential distribution around conductors of a grid has been studied from a well-known formula 
given by Erskine for MultiWire detectors. In the symmetric case where the grid is placed midway 
between two grounded plates, it has been shown that the error due to the almost but not exactly 
circular equipotential has a quadrupole-like contribution. This point has been checked through Finite 
Element Model analysis. After solving the electrostatic problem for the general geometry, it has been 
proved that a dipole contribution also exists in this case with a rather large amplitude. This dipole was 
then studied using a classical model and an advanced technique suitable for this geometry has been 
proposed. Finally this paper provides corrective terms of Erskine´s equation that yield at least a 10-6 
accuracy, as reported in table 1. 

Table 1. Order of magnitude of the relative error between FEM (with 10-9 error) and different models. 

Symmetric Equation (3) 10-6 
Symmetric with model of the quadrupole Equations (3), (6) 10-8 

Asymmetric Equation (7) 10-3 
Asymmetric with model A of the dipole Equations (7), (11) 10-5 
Asymmetric with model B of the dipole Equations (7), (18) 10-6 

Table 1 also shows that the error for the symmetric case is negligible, justifying why in the past, little 
attention was paid to the modelling issue. This does not apply to the general (asymmetric) case 
anymore. 

6.  Appendix 
The general case where the grid is not centralized is somewhat more complicated than the symmetric 
one. Special functions can be invoked [1,3,7], but some of them are not embedded in Comsol 
Multiphysics®. Another method consists in assuming that the total potential is due to the one created 
by an isolated grid and superposing an external field [8]. This method gives good insights into the 
potential but it does not solve the electrostatic problem entirely, since the external electric field also 
depends on the potential. We can also find in [10] an expansion of the potential using separation of 
variables and eigenfunctions of the Laplace problem.  

In their book [3], the authors present a technique based on the easy-to-obtain configuration of a 
grid above an infinite plane. As sketched in figure 2, the general case is decomposed into a grid (with 
linear charge λ ) over a grounded plate, plus a two-plate capacitor with surface charge Pσ . 

First is recalled the expression of complex potential for an isolated grid placed in the plane y = 0: 
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For a grid placed above a grounded plate situated at 10 jLz −= , the application of image theory gives  
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0 2 πξ = . The different approximations of expression (A2) are easy to derive and are 

indicated in [3].  
Finally, adding to (A2) the constant offset 1V  and the linear expression of the potential for a two-

plate capacitor, the superposition represented in figure 2 is expressed by equation (7). 



 
 
 
 
 
 

The boundary conditions 1)0( VVV Gline −=  and 122 )( VVjLzVline −==  are two equations 
depending on the unknowns λ  and Pσ . This 2×2 system is written in a matrix form, using a 

convenient equivalent charge density of the grid 
a
λσ = : 
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Inversion of this system gives the expression of the charges λ  and Pσ  as functions of GV , 1V , and 

2V : 

 0CV=λ , (A4) 
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It can be checked that, in the symmetric case, the surface charge on each plate is half the one 

distributed on the grid, i.e. 
aP 2
λσ −= . 
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