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Abstract. In this paper we report on the study of two and multi-level atoms interacting
with multiple laser beams. The semi-classical approach is used to describe the system in which
the atoms are treated quantum mechanically via the density matrix operator, while the laser
beams are treated classically using Maxwells equations. We present results of a two level atom
interacting with single and multiple laser beams and demonstrate Rabi oscillations between the
levels. The effects of laser modulation on the dynamics of the atom (atomic populations and
coherences) are examined by solving the optical Bloch equations. Plots of the density matrix
elements as a function of time are presented for various parameters such as laser intensity,
detuning, modulation etc. In addition, phase-space plots and Fourier analysis of the density
matrix elements are provided. The atomic polarization, estimated from the coherence terms of
the density matrix elements, is used in the numerical solution of Maxwells equations to determine
the behaviour of the laser beams as they propagate through the atomic ensemble. The effects
of saturation and hole-burning are demonstrated in the case of two counter propagating beams
with one being a strong beam and the other being very weak. The above work is extended to
include four-wave mixing in four level atoms in a diamond configuration. Two co-propagating
beams of different wavelengths drive the atoms from a ground state |1〉 to an excited state
|3〉 via an intermediate state |2〉. The atoms then move back to the ground state via another
intermediate state |4〉, resulting in the generation of two additional correlated photon beams.
The characteristics of these additional photons are studied.

1. Background
Quantum properties of light, besides being a subject of fundamental interest, is being used in
emerging technologies such as quantum cryptography and quantum computing. There are a
variety of ways of generating quantum light, however here we aim to investigate the generation
and properties of quantum light using non-linear processes in cold atoms. We investigate the
generation and subsequent properties of coherent light by means of four-wave mixing in an
ensemble of cold rubidium atoms.

The motivation for this study is the fact that there is growing evidence that the next
generation of computing and communication is going to be quantum based, i.e. these systems



operate using the principles of quantum physics. These systems will operate using fundamentally
new principles that involve light-atom interactions on a single photon level and ambitious
schemes such as quantum teleportation. For long distance communications these schemes have
to be implemented using entangled photons.

Entangled photons produced by four-wave mixing in a cold atomic ensemble have been shown
to have desirable features. These photons have a narrow bandwidth, which is determined by
the dispersion of the vapour and can be narrow enough to match the absorption profile of the
atoms. These biphoton sources have properties such as long coherence time, long coherence
length, high spectral brightness and high conversion efficiency. There have been a number of
books and papers describing laser-atom interactions (e.g. see [1, 2, 3, 4, 5, 6]), and entangled
photon pair generation using four-wave mixing in rubidium atomic ensembles [7, 8, 9, 10, 11].

We report on the computational study of the interaction between laser beams and, two
and multi-level atoms. We use a semi-classical approach in which the dynamics of the atoms
(described by the density matrix elements) are governed by the Liouville-von Neumann equation,

∂ρ̂

∂t
= − ı

~

[
Ĥ, ρ̂

]
+ Ldamp(ρ̂) (1)

while the laser beam is described by the wave equation derived from Maxwell’s equations. The
Hamiltonian of the total system is Ĥ = Ĥ0 + ĤI , where Ĥ0 is the unperturbed Hamiltonian
and ĤI is the interaction term. The effects of dissipation are contained in Ldamp(ρ̂). We first
discuss a two level atom interacting with a single laser beam and examine the dynamics of the
population and coherence terms of the density matrix elements. Thereafter we examine the
behaviour of the laser beam as it propagates first in two level atoms and later in multi-level
atoms.

The overview of the paper is as follows: Section 2 describes the interaction of a two level atom
with a single laser beam. Results showing the effects of a uniform and modulated laser beam are
given. Saturated absorption spectroscopy is discussed in Section 3. Results are given for various
parameters followed by a discussion on non-linear mixing and entangled photon generation.

2. Laser-atom interactions in two level atoms
Consider an atom having two energy states represented by a ground state |1〉 having energy E1

and an excited state |2〉 having energy E2. Assume these states are separated in frequency by
ω0. Now let a laser beam with an electric field

~E(t) = ~E0 cosωt

interact with a sample of these atoms, which are stationary. In the above, ~E0 is the amplitude
of the electric field of the laser beam, cosωt represents the time variation of the electric field of
the laser beam and ω is the laser frequency.

Then the following Hamiltonian describes the interaction:

ĤI = −µ̂ · ~E0 cosωt (2)

where −µ̂ represents the dipole moment operator of the atom. The Liouville-von Neumann
equation makes use of ĤI to describe the time evolution of the density matrix elements of the
system ρ̂ =

∑
i Pi|i〉〈i|, where Pi is the probability of the atom being in state |i〉. It is used to

derive the optical Bloch equations [3](below) for a two level atom:

∂ρ11

∂t
=
ı

2
Ω(ρ12 − ρ21) + 2γspρ22 (3)
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Figure 1. Rabi oscillations of a two level atom interacting with a uniform laser beam. Plots
are: (A) - probability density and (B) - interference terms.

∂ρ12

∂t
=
ı

2
Ω(ρ11 − ρ22) +

[
ı(ω0 − ω)− γsp

]
ρ12 (4)

∂ρ21

∂t
= − ı

2
Ω(ρ11 − ρ22) +

[
− ı(ω0 − ω)− γsp

]
ρ21 (5)

∂ρ22

∂t
= − ı

2
Ω(ρ12 − ρ21)− 2γspρ22 (6)

where Ω = 〈µ̂〉E0/~ is known as the Rabi frequency and γsp represents a decay/de-coherence
coefficient. ρ11 and ρ22 tell us the probability of the atom being in the ground and excited states
respectively. ρ12 and ρ21 are the interference terms of the atom indicative of superposition. We
solve the above numerically first for a uniform laser beam and then for a frequency modulated
laser beam.

2.1. Results
Results of the numerical solution of Equations (3-6) are given in Figures 1-3 which correspond
to a uniform laser beam while Figures 4-6 deal with a frequency modulated laser beam. In
all the plots labelled A, the blue curve represents ρ11 and the red curve ρ22. The green curve
represents ρ12 and the magenta curve ρ21 in Figures 1-3B. The laser is switched on at time
t = 0 s with ρ11 = 100% and ρ22 = 0%. Rabi oscillations are demonstrated in Figure 1 where
ω0 − ω = 0. When ρ11, ρ22 = 50% maximum superposition is achieved. In Figure 2 the effects
of laser detuning can be seen i.e. ω0−ω 6= 0. The interference between Ψ1 and Ψ2 is decreased,
where Ψi is the wave function corresponding to level i. When a small dissipation is introduced
in the form of γsp, the effects can be seen in Figure 3. The interference between Ψ1 and Ψ2

decays to the point where the probability of superposition is close to 0%.
Laser beam modulation is introduced by adding a sinusoidal variation to the existing laser

frequency
ωlaser = ω +D sin(2πωmt) (7)

where ω is a fixed value, ωm is the modulation frequency and D represents the magnitude of
variation in ωlaser. The effects of laser modulation can be seen in Figures 4-6. In Figure 4 the
modulation frequency is chosen to be greater than the Rabi frequency Ω = 12.73 s−1. From
Figure 4A the time series shows a clear pattern for the modulation. Figure 4B is the phase
space plot indicating that the atom returns to the ground state after each oscillation. The
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Figure 2. A two level atom interacting with a uniform laser beam that is detuned. Plots are:
(A) - probability density and (B) - interference terms.
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Figure 3. A two level atom interacting with a uniform laser beam where the dissipation
coefficient is non-zero. Plots are: (A) - probability density and (B) - interference terms.
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Figure 4. A two level atom interacting with a modulated laser beam where the modulation
frequency is greater than the Rabi frequency. Plots are: (A) - probability density; (B) - phase
space; and (C) - power spectral density. NB: In (A) only a few cycles are shown.
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Figure 5. A two level atom interacting with a modulated laser beam where the modulation
frequency is less than the Rabi frequency. Plots are: (A) - probability density; (B) - phase
space; and (C) - power spectral density. NB: In (A) only a few cycles are shown.
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Figure 6. A two level atom interacting with a modulated laser beam where the modulation
frequency is similar to the Rabi frequency. Plots are: (A) - probability density; (B) - phase
space; and (C) - power spectral density. NB: In (A) only a few cycles are shown.

power spectral density, Figure 4C, shows a peak (around 13 s−1) indicating the most prominent
frequency besides the average value at the origin. A frequency that is less than the Rabi
frequency is used to generate Figure 5. The time series, Figure 5A, depicts an irregular pattern
for the modulation. The phase space plot, Figure 5B confirms this by indicating that the atom
does not always transition to an expected state. Multiple peaks of similar amplitude are seen in
the power spectral density, Figure 5C where the first peak is located at the modulated frequency
ωm and the second is located at 2ωm. Finally, the modulation frequency is chosen to be similar
to the Rabi frequency and is depicted in Figure 6. From Figure 6A it can once again be seen
that an irregular pattern occurs which is also confirmed by the phase space plot, Figure 6B.
In Figure 6C the power spectral density shows two peaks of the same amplitude located on
either side of the Rabi frequency (12.73 s−1). These results show that the atom displays chaotic
behaviour. Similar results have been seen by Pisipati et al [12].
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Figure 7. Basic arrangement for saturated absorption spectroscopy.

3. Saturated absorption spectroscopy
Next we look at the effect atoms have on the propagation of the laser beams which is done by
making use of the basic arrangement depicted in Figure 7. Counter-propagating beams, E1 and
E2, having the same frequency but different electric fields are passed through a gaseous sample
after which the probe beam intensity is measured. The total electric field (in the laboratory
frame) is given by

~E = ( ~E1e
ıkz + ~E2e

−ıkz)e−ıωt (8)

Assuming all the waves propagate in the z-direction we substitute Equation (8) in the wave
equation

∇2 ~E − 1

c2

∂2

∂t2

(
~E +

~P

ε0

)
= 0 (9)

where ~P represents the polarization due to the applied electric filed, and we make use of the
slowly varying approximation to obtain the following equation for the amplitude E1 [2]

∂E1(z)

∂z
= ı

ω

2ε0nc
P (10)

Equation (10) is used to predict the behaviour of the electric field as it propagates through the
sample where P is the total polarization given by

P =

∫
dv

[
1√
πv0

e
− v2

v20

]
︸ ︷︷ ︸

a

[
1− Ω2

2

Γsp

γ

(ω0 − ω2)2 + γ2 +Ω2
2
γ

Γsp

]
︸ ︷︷ ︸

b

...

...

[
N

V

|µ12|2

2~
ıγ + (ω0 − ω1)

(ω0 − ω1)2 + γ2 +Ω2
1
γ

Γsp

E1e
−ıωt

]
︸ ︷︷ ︸

c

(11)

where µ12 is the matrix element of the dipole moment and Ω1 and Ω2 are the Rabi frequencies
due to the electric fields E1 and E2 respectively. The velocity of the atoms is denoted by v
and v0 is the rms velocity, N/V is the density of atoms, Γsp is the decay of the population of
the upper level and γ is the decay of the coherence [2, 13]. Equation (11) is a sum of all the
polarizations due to the atoms and takes into account the various thermal velocities as well.
When doing this, the atoms see the laser frequency as being Doppler shifted, this results in a
broadening of the absorption profile. The square bracket labelled a in Equation (11) caters for
the atomic velocity distribution and has a Gaussian profile. The fraction of atoms that part-take
in the polarization is given by the square bracket labelled b in Equation (11) and is unity for
all ω except close to ω2 = ω0 where ω2 is the frequency of the pump beam as seen by the atoms
moving with velocity v. At and close to ω2 = ω0 a dip indicates a reduction in the number of
atoms in the ground state, this effect is referred to as hole burning. The square bracket labelled
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Figure 8. A comparison between the analytical and numerical solution of the probe beam
intensity for frequencies above and below resonance for a particular spatial point in the sample.
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Figure 9. The probe beam intensity with increasing values of pump beam field, E2.

c in Equation (11) is the term representing the polarization due to the probe beam which has a
frequency ω1. These terms are derived theoretically from the optical Bloch equations [2, 13].

3.1. Results
First we analyse the system with all atoms having zero velocity and interacting with the probe
beam. Using Equation (10) results in the analytical solution for the intensity of the probe beam

|I| = I0e
−2αz (12)

where

α =
ω

2ε0nc

N

V

|µ12|2

2~
γ

(ω0 − ω)2 + γ2
(13)

This demonstrates absorption and is depicted by Figure 8 which shows a comparison between
the analytical solution, where I is calculated using Equation (12), and the numerical solution,
where I is obtained by solving Equation (10). Figure 8 shows satisfactory agreement between
the two solutions.



The ground and excited state populations of the atoms are altered by the pump beam. The
electric field of the pump beam is made strong enough to saturate the sample, therefore chang-
ing the measured absorption. Figure 9 demonstrates this change where the blue curve depicts
the probe beam intensity for atoms having zero velocity and the pump beam electric field being
zero. The thermal velocity of the atoms are then taken into account and the pump beam electric
field is gradually increased. From Figure 9 the orange, yellow, purple and green curves depict
the effects the pump beam has on the sample. It can be seen that when the thermal velocities
are taken into account the absorption profile is broadened whilst the absorption at and close to
resonance is decreased (showing the true Lorentzian profile) resulting in the intensity to increase.
We assume in the above that the pump beam is strong enough so that it remains unchanged as
it propagates through the sample.

4. Four-wave Mixing
We now examine a non-linear mixing process using a diamond energy level structure to simulate
four-wave mixing in rubidium gas. We examine four-wave mixing using the energy level structure
shown in Figure 10. These states could represent those of 87Rb as shown in brackets.
E1 to E4 are the corresponding energies of each level, ω1 and ω2 are frequencies of two pump

|1〉 (5S1/2, F = 2)E1

|4〉
(5P1/2, F = 2)

E4|2〉
(5P3/2, F = 3)

E2

|3〉 (5D3/2, F = 3)E3

ω1 ω4

ω2 ω3

Figure 10. Four-wave mixing geometry.

lasers and ω3 and ω4 are frequencies of two internally generated photons.
We will assume that the pump laser beams are strong enough that they do not deplete as

they propagate through the atomic ensemble. We will also assume that all photons propagate in
the positive z-direction. The atomic levels are assumed to be such that the photons of frequency
ω1, ω2, ω3 and ω4 couple only transitions between |1〉 ↔ |2〉, |2〉 ↔ |3〉, |3〉 ↔ |4〉 and |4〉 ↔ |1〉,
respectively, that is they are very much detuned compared to the other transitions. The total
electric field is then

E =

4∑
i=1

(
Ẽie
−ıωit + c.c.

)
(14)

where
Ẽi = Ei(z)e

ıkiz (15)

The electric field amplitudes Ei should not be confused with the energy levels. The behaviour
of the electric field E3 and E4 due to the frequencies ω3 and ω4 are described by Maxwell’s
equations:

∂

∂z
E3(z) = ı

ω3

2εc

N

V
µ34ρ

(3)
34 (16)

∂

∂z
E4(z) = ı

ω4

2εc

N

V
µ41ρ

(3)
41 (17)



where ρ
(3)
ij are the third order density matrix elements and are obtained from the master equa-

tion as described below.

The total Hamiltonian is
H = H0 +HI (18)

where HI = −µ̂ · E and −µ̂ is the dipole moment of the atom. We will use the following as a
basis:

|Ψ1〉 = e−ıE1t/~|1〉 (19)

|Ψ2〉 = e−ıE2t/~|2〉 (20)

|Ψ3〉 = e−ıE3t/~|3〉 (21)

|Ψ4〉 = e−ıE4t/~|4〉 (22)

In the above basis

H0 =


E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4

 (23)

and H ′I = e−ıH0t/~ HI e
ıH0t/~ becomes

E


0 −µ12e

ıω12t −µ13e
ıω13t −µ14e

ıω14t

−µ21e
ıω21t 0 −µ23e

ıω23t 0
−µ31e

ıω31t −µ32e
ıω32t 0 −µ34e

ıω34t

−µ41e
ıω41t 0 −µ43e

ıω43t 0

 (24)

where ωij = (Ei − Ej)/~ and µij = 〈i|µ̂|j〉. Then the Liouville-von Neumann equation (also
known as the master equation) that we solve is

ρ̇ = − ı
~
[
H ′I , ρ

]
+ relaxation terms (25)

Using perturbation theory we let

ρ = ρ(0) + λρ(1) + λ2ρ(2) + ... (26)

We also expand each ρ(i) in frequency as well and also we replace H ′I by λH ′I . We assume at

zero order ρ
(0)
11 = 1 with all other terms being zero, i.e.

ρ(0) =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (27)

In the rotating wave approximation, the first order solutions we find that are non-zero are

ρ̃
(1)
21 '

1

~
µ21

E1

∆21 − ıΓ21
e−ıω1t (28)

and

ρ̃
(1)
41 '

1

~
µ41

E4

∆41 − ıΓ41
e−ıω4t (29)



plus their complex conjugates where ρ̃
(1)
ij = ρ

(1)
ij e
−ıωijt. All the other terms are zero. The third

order terms that are important for solving Maxwell’s equation for the ω3 and ω4 terms are

ρ̃
(3)
34 '

1

∆34 − ıΓ34

[
2

γ41

|µ14|2µ34

~3

|E4|2E3Γ41

∆2
41 + Γ2

41

+
µ14µ32µ21

~3

E1E2E
∗
4

(∆42 + ıΓ41)

(
1

(∆21 − ıΓ21)

− 1

(∆41 + ıΓ41)

)
− µ14µ32µ21

~3

E1E2E4

(∆31 − ıΓ31)(∆21 − ıΓ21)

− µ14µ34µ41

~2

E3|E4|2

(∆31 − ıΓ31)(∆41 − ıΓ41)

]
e−ıω3t

(30)

and

ρ̃
(3)
41 '

1

∆41 − ıΓ41

[
− 2

γ21

|µ12|2µ41

~3

|E1|2E4Γ21

∆2
21 + Γ2

21

− 4

γ41

|µ14|2µ41

~3

|E4|2E4Γ41

(∆2
41 + ıΓ2

41)

+
µ43µ32µ21

~3

E1E2E
∗
3

(∆31 − ıΓ31)(∆21 − ıΓ21)
+
µ43µ34µ41

~3

|E3|2E4

(∆31 − ıΓ31)(∆41 − ıΓ41)

]
e−ıω4t

(31)

where ∆ij represents the detuning between levels |i〉 and |j〉 and the corresponding photon, Γij
represents the decay rate of the corresponding coherence ρij and γij represents the decay of the
population ρii. Using the following definition of Rabi frequencies

Ω1 = µ12E1/~
Ω2 = µ23E2/~
Ω3 = µ34E3/~
Ω4 = µ41E4/~

(32)

we rewrite Equations (30) and (31) in terms of these Rabi frequencies and solve numerically self
consistently together with Maxwell’s equations, Equations (16) and (17), for various values of
z along the atomic ensemble and various values of detuning. The above approach is used for a
different geometry of four-wave mixing by Boyd et al [14].

4.1. Results
The variation of the intensities of ω3 and ω4 photons as a function of distance along the sample
for various detuning of pump 1 and pump 2 are shown in Figures 11 and 12. Figure 13 shows a
colour intensity plot of the intensity of ω3 for both values of detuning. In order to use Equations
(30) and (31) it was necessary to start the calculations with very small values for Ω3 and Ω4.

From Figures 11 and 12 we can see an exponential growth in the intensities of the internally
generated photons where the intensities depend heavily on the detuning of the lasers. The highest
intensity occurs when both lasers have zero detuning. The intensity is also more sensitive to the
detuning of the ω1 laser.

5. Summary and Conclusion
We have investigated laser-atom interactions by first examining a two level atom interacting
with a single laser beam where Rabi oscillations have been demonstrated. Dissipation effects
show up as decay in the populations and de-coherence terms in the density matrix elements.
Chaotic behaviour was also seen to occur when a modulated laser is used.

The analysis was extended to include saturated absorption spectroscopy and non-linear
mixing processes in multi-level atoms. We showed that two additional coherent beams can
be generated by four-wave mixing using two pump laser beams. The intensities of these beams
depend on the detuning of the pump lasers.
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Figure 11. Intensities of the ω3 (A) and ω4 (B) photons for detuning values(∆12/Γ12) (from
top to bottom): 0 (red), 0.2 (orange), 0.4 (yellow), 0.6 (green), 0.8 (blue) and 1 (purple). These
values are relative to the decoherence rate.
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Figure 12. Intensities of the ω3 (A) and ω4 (B) photons for detuning values(∆23/Γ23) (from
top to bottom): 0 (red), 0.2 (orange), 0.4 (yellow), 0.6 (green), 0.8 (blue) and 1 (purple). These
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Figure 13. Colour plot of intensity of ω3 photons as a function of detuning of pump 1 (∆21/Γ21)
and pump 2 (∆32/Γ32).
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