
Sustainable numerical scheme for molecular dynamics 

simulation of the dusty plasmas in an external magnetic field 

K N Dzhumagulova and T S Ramazanov  

IETP, al Farabi Kazakh National University, 71, al Farabi av., Almaty, 050040, Kazakhstan 

 

dzhumagulova.karlygash@gmail.com 

Abstract. The method, which allows one to carry out computer simulation of a system of 

charged particles in a strong external homogeneous magnetic field with a time step that is 

independent on the Larmor oscillation time, was generalized for the case of the presence of the 

surrounding background for the moving particles. Correctly taking into account a strong 

magnetic field and  friction force, which both depend on the particles velocities, we obtained 

solution resistant to a change in the time step within the second-order Velocity Verlet 

propagation scheme. 

1. Introduction 

Classical molecular dynamics is a problem of numerical solving of the Newton equations of motion 

for the many particle systems. The particles interact with each other and often turn up under an 

influence of the external fields. Additionally, the particles can be immersed in any external stationary 

environment, for example, one may consider the suspended Brownian particles in a liquid or the 

charged particles in a neutral gas (weakly ionized plasma), and finally, the charged particles of the 

condensed material in the background plasma (dusty plasma) [1,2]. If the concentration of the particles 

of the background medium itself is much higher than the concentration of the immersed particles, the 

environment can be considered as a continuum which makes some averaged effect on the immersed 

particles. This effect on the particle dynamics can be described by the friction force: 

( ) ( )frF t t   ,                                                               (1) 

where   is the friction coefficient, and ( )t  is the particle velocity, which is relative to the stationary 

background. 

In this work, we considered a system of the charged particles exposed in a static uniform external 

magnetic field. Also the effect of the friction force was taken into account. Implementation of the 

external magnetic field and the friction force in the MD simulation is not a very difficult task. In 

Refs.[3-6] the different properties of a system of charged particles in a magnetic field were 

investigated on the basis of the molecular dynamics. In Refs.[7-10] the simulations of the dusty 

plasmas with taking into account of the background plasma and random force were performed on the 

basis of the Langevin dynamics. 

In Ref.[11] authors described the way for obtaining of the sustainable numerical scheme for 

simulation of the particle system in the presence of some forces, depending on the particle velocity. 

There also second-order Velocity Verlet scheme, taking into account the external uniform magnetic 

field, was presented. Since MD investigates the trajectory of each particle, time step t  is chosen 

small enough to have the necessary number of steps in the period of the Larmor oscillation in order to 



properly monitor the movement of particles in a spiral. Under the influence of the magnetic field B 

particle with specific charge q/m performs the rotation with the Larmor frequency /qB m . One of 

the conditions for selection of t  is related to the magnetic field strength: 

 

2t                                                               (2) 

When the magnetic field is weak, the condition (2) is performed quite easily. In a strong magnetic 

field for the condition (2) one should select very small time steps, which leads to a sharp increase in 

the amount of calculations, sometimes critical. In work [11] the stable numerical scheme was obtained 

on the basis of the expansion of ( )r t t and ( )t t  in the Taylor series. This scheme as was shown 

is resistant to a change in the time step at large external magnetic fields. Time step in this scheme is 

independent of the Larmor period of oscillation. In this paper, we introduce the frictional force in the 

Velocity Verlet scheme, performing all steps described in [11] for obtaining of the stable scheme for 

the case with background. 

 

2. The Velocity Verlet scheme for simulation of the charged particles in an external magnetic 

field and background medium  

 

2.1 Explicit and implicit Velocity Verlet schemes 

Lets consider the system of N  charged particles. The position, velocity, and acceleration of the i - th 

particle at time t are given by the three-dimensional vectors ( ), ( ), ( )i i ir t t a t  . The components of the 

vectors are x, y, and z, respectively. We can write Newton's equations of the all N particles as a system 

of 6N first-order differential equations: 

( )i
i

dr
t

dt
         ,                                                      (3) 

( )i i
i

i

d F
a t

dt m


          ,                                                   (4) 

here im  is the mass of the particle i, 
iF  is the force acting on the particle i and i=1,2..N. In general 

case, ia can be a function of the coordinates and velocities of all particles.  

To solve first- order differential equations (3)-(4), there are many numerical algorithms, including the 

Velocity Verlet scheme (VV), which is one of the most popular for MD simulations. 
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In scheme (5) - (7) one can see t t on both sides of Eqs. (6) and (7), so it appears as implicit 

scheme. In many simple tasks when a magnetic field and friction are absent particle acceleration does 

not depend on the particle velocity and the equation (6) can be written as follows: 

1( ) ( ( ), , ( ), )Na t t a r t t r t t t t                                           (8) 

From equation (5) one can calculate ( )r t t  at time t. Using (8) ( )a t t can be found, and 

finally ( )t t  via (7). Thus, implicit form of equations (5) - (8) disappears. In this case, VV scheme 

is a second- order integration scheme, i.e., the error term is 
2(( ) )O t . 

Obviously, when the magnetic field affects on the charged particles, and (or) the particles undergo 

the friction force in the background medium, the acceleration depends on the velocity, and (8) is not 



correct, we have an implicit scheme (5) - (7). As was shown in Ref.[11], in the case of a static 

homogeneous external magnetic field acting on the system, VV can be modified in order to repair an 

explicit form. We performed this taking into account the friction force. In a homogeneous magnetic 

field (0,0, )B B directed along the axis z, the acceleration of each particle, also experiencing the 

friction in the background gas, can be written as follows: 

 

( ) ( ) ( ) ( ),C

za t a t e t t                                                        (9)   

here ( )Ca t  is part of acceleration which does not depend on the velocity: 

1( ) ( ( ),..., ( ); ),C C

Na t a r t r t t                                                    (10) 

/qB m   is the Larmor frequency, (0,0,1)ze  is the unit vector directed along the z axis. To 

simplify the notation, we considered a system where all the particles have the same charge- to-mass 

ratio. In subsections 2.2 and 2.3, we described two different approaches, taking into account the 

magnetic field and the friction force in the VV scheme, which we in agreement with Ref.[11] called as 

"inversion ze  " and "Taylor expansion". 

 

2.2 Inversion ze   

In expression (9), we have the cross product 
ze  , which after substitution in Eqs. (5) - (7) mixes 

the 
x and 

y components of the each individual particle. Rewriting Eq.(7) in an explicit form for 

( )t t  , we have the following equations of the explicit VV scheme with the acceleration given by 

(9): 
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( )yr t t  can be obtained from (11) by replacing  x y  and   
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where 
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, ( )y t t   can be obtained from (13) by replacing  x y  and 

   
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It is shown below the scheme (11) - (14) is stable only in the case of weak magnetic fields. When a 

strong magnetic field is applied, it becomes unstable with respect to the time step and requires a large 

amount of calculations with a small time step. 

 

2.3 The Taylor expansion  

In work [11] for an arbitrary value of magnetic field the authors developed the robust numerical 

scheme based on the Taylor expansion of the particle acceleration and velocity, followed by the 



correct choice of all the terms that are not higher than 
2(( ) )O t . This scheme has been successfully 

used in many studies, for example in Ref.[12]. Applying the same technique for the case when the 

particles are immersed in a homogeneous stationary environment we obtained the following equations 

for the positions and velocities of the particles: 
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( )yr t t  can be obtained from (15)  by replacing x y  and  )    
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where we have defined: 

 

( ) exp( )sin( )S t t t t                                                 (17) 

( ) exp( )cos( ) 1C t t t t                                                  (18) 
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( )y t t  can be obtained from (19) by replacing x y  и    
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The system of Eqs. (15) - (20) is a sustainable second-order numerical scheme for simulation of the 

charged particles in an external homogeneous stationary magnetic field and background environment. 

The choice of the integration step for it is not limited to a condition 2t   . In these equations, 

there are not references to the acceleration caused by the Lorentz force and by frictional force, they are 

fully integrated into these equations. There are references only on 
Ca caused by the interaction of the 

particles, as well as by the external forces beyond the control of the particles velocities. The choice of 

the time step is now depends only on the time scale conditioned by 
Ca . At 0   Eqs.(15) - (20) 

transform to the corresponding equations presented in [11] for the case without the background. 

 

 



 

3. Numerical example 

Lets consider the following example. We calculated the trajectory of the first charged particle (charge 

and mass are 1 11, 1q m   ), moving in a gaseous environment with a friction coefficient   in the 

Coulomb field of the second stationary charged particle ( 2 1q  ), and in a static homogeneous external 

magnetic field. At the initial time 0t   position and velocity of the first particle are determined by the 

vectors (0) ( 1,0,0)r    and (0) (0,1,0)  , respectively. The second particle is at the origin (0,0,0). 

Then, the acceleration of the first particle is given by: 

3
( ) ( ) ( )z

r
a t e t t

r
                                                       (21)                 

We numerically calculated the equations of motion from 0t   to 20t   in a wide range of 

variation of the parameters , t   and   on the basis of both methods, by an algorithm (11) - (14) 

and the algorithm of the Taylor expansion (15) - (20). Fig. 1 shows the trajectories calculated for 

different values   and  on the basis of the equations (15) - (20), the trajectories calculated by the 

scheme of the Taylor series expansion [11], which does not take into account the friction force 

( 0  ), are also given. As can be seen from these graphs at 0.001   the trajectories, calculated by 

(15) - (20) and [11], are almost the same. With an increase in   noticeable differences occur. It is also 

shown that with an increase in the magnetic field the Larmor rotations occur in addition to the rotation 

around of the force center of the electric field. 
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Figure 1. Trajectories of charged particle with acceleration (21). (a) - 1   (b) - 0.001  

 

Fig. 2a shows the trajectories calculated for different values of the time step t  on the basis of 

Eqs. (11) - (14), as well as Fig. 2b displays these calculated by a scheme of the Taylor expansion (15) 

- (20). In the first case on Fig. 2a it is visible that an increase in the time step results in the instability 

of the solution of the particle motion equations. Conversely, Fig. 2b shows that an algorithm of the 

Taylor series expansion (15) - (20) is resistant to a change in the time step. At 0.1t   the trajectory 

becomes more polygonal in connection with a decrease in the number of the calculation points on the 

Larmor spiral, but the deviation of the solutions from the trajectory calculated at 0.001t   remains 

within the margin of error. Thus solutions on the basis of the algorithm (11) - (14) depend strongly on 

t , while an algorithm of the Taylor expansion (15) - (20) is more stable relatively to a change in the 

time step, including range when 0.1t  . Recommended step is 0.1t  , since at its bigger values 



points of position still lie on the "exact" trajectory, but their number, attributable to a single coil, 

decreases.  
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Figure 2. Trajectories of charged particle with acceleration (21). 10, 0.001    (a) – algorithm  

(11)-(14), (b) - algorithm (15)-(20) 

 

4. Conclusion 

We presented a stable numerical scheme for solving of the equations of motion of charged particles in 

a background medium, as well as in a strong external static homogeneous magnetic field. To obtain it 

the method of the expansion in the Taylor series has been used. The Lorentz force and friction force 

depending on the particle velocity have been taken into account. In the resulting scheme the choice of 

the time step does not depend on the magnetic field.  
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