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Abstract. The PEBSI Monte Carlo code was recently upgraded towards usefulness to
compute the effective Sherman function, which is used in electron Mott polarimetry. The
results of the simulation were compared to experimental data for a 100 keV polarized electron
beam. The properties of the effective Sherman function, as well as the problem of experiment
optimization were analyzed using the data from the simulation.

1. Introduction
The method of Mott polarimetry is used to determine the spin–polarization of electron beams,
taking advantage of the dependence of Mott scattering cross section on spin direction due to the
spin–orbit interaction. It is used in a wide range of electron energies (from keV up to several
MeV), both in basic research, as well as numerous applications (e.g., spin–polarized scanning
electron microscopy and spin–resolved photoemission spectroscopy).

The method is based on measuring the azimuthal asymmetry1 in Mott scattering of a
polarized electron beam on thin targets made of heavy elements (e.g., Au). The degree of
the observed asymmetry is related to the Sherman function, dependent on scattering angle and
beam energy.

However, the pure Sherman function, which may be calculated theoretically, corresponds to
scattering on a single atom. On the other hand, the measurement is performed on targets of
finite thicknesses. In this case the effective Sherman function has to be used, in which multiple
interactions of the electron with several target atoms are accounted for. These effects cannot be
calculated analytically and simulation tools must be used for modeling the passage of polarized
electrons through matter. Other background processes changing the polarization state of the
electrons also take place (in particular Møller scattering and bremsstrahlung emission), leading
to the decrease of the analyzing power of the polarimeter.

Furthermore, experimental data covering a wide range of scattering angles exist for a few
energies only2. Therefore, simulation seems to be a natural choice for a systematic study of the
1 i.e., with detectors placed symmetrically about the beam axis at a given angle with respect to the beam direction
2 the construction of a typical Mott polarimeter does not allow for convenient change of the angle



properties of the Sherman function (especially in energy ranges where few or no experimental
data exist) and is beneficial because of the fact that it allows to investigate additional effects
besides the value of Sherman function and angular distribution of scattered electrons (e.g.,
sources of background, optimal detector cuts etc.).

The angular and energy distributions of scattered electrons were studied, both for all particles
and based on interaction types which took place in the target. Electrons originating from Møller
scattering were found to have important impact on the effective Sherman function if low energy
particles are taken into account, thus leading to significant decrease of the analyzing power of
the polarimeter. Furthermore, simple dependence on target thickness is not observed anymore
in this case. This effect can be avoided by imposing proper detector cuts on electron energy.

Optimizing the measurement comes down to choosing the optimal scattering angle and target
thickness for electrons of a given energy. Therefore, the angular dependence of the Sherman
function was analyzed from this perspective. Simulation allows to exclude regions less suitable
for measurement (e.g., where the Sherman function undergoes rapid changes with scattering
angle3). The dependence of the Sherman function on target thickness (for a given scattering
angle) was also analyzed and compared to commonly used parametrizations.

2. Interactions of electrons with matter
2.1. Mott scattering
The cross section for Mott scattering (i.e., the elastic scattering of electrons on atomic nuclei)
depends on electron polarization according to the following relation [1]:

dσMott
dΩ =

(dσMott
dΩ

)
0

(1 + S(θ)~P · ~n),

where (dσMott/dΩ)0 is the cross section corresponding to scattering of unpolarized electrons,
S(θ) is the Sherman function, θ is the scattering angle, ~P is the polarization vector of the
incident electron and ~n is the unit vector normal to the scattering plane.

The Mott scattering cross section is calculated from the Dirac equation, taking into account
the spin–orbit interaction (contrary to the Rutherford cross section which neglects this effect).
The numerical values depend on the atomic potential assumed in the calculations; at low energies
and low scattering angles the screening of the nuclear Coulomb potential by the electron cloud
cannot be neglected (as in the Rutherford formula assuming pure Coulomb field of the nucleus).

Experiments are carried out using detectors placed symmetrically about the beam axis at a
given angle θ with respect to the beam direction. The measurement is typically performed in
backscattering, as the largest effect (S) is obtained for large scattering angles. The quantity of
interest is the azimuthal (left–right) asymmetry in the number of electrons detected in the two
detectors, ALR, which allows to calculate the polarization of the electron beam according to the
following formula:

~P~n = ALR

S
.

In practice the theoretical value of S is replaced with its effective value Seff in the above equation.
It is worth stressing that this method is sensitive only to the spin projection on the direction
perpendicular to the scattering plane.

Both the unpolarized cross section and the Sherman function are defined by two scattering
amplitudes, f(θ) – spin–conserving amplitude and g(θ) – spin–flip amplitude, according to the
following equations [2]: (dσMott

dΩ

)
0

= |f(θ)|2 + |g(θ)|2,

3 this could not be taken into account in experiments in which the Sherman function was determined by a single
measurement
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Figure 1. Transfer of polarization from a
100 keV, 100% polarized beam electron to
the secondary Møller electrons; dependence
of the length of the polarization vector on the
scattering angle θ for two electrons in the final
state (θ is measured for the electron whose
polarization is plotted with the solid line).

S(θ) = i
fg∗ − f∗g

|f(θ)|2 + |g(θ)|2 .

Furthermore, the polarization vector of the electron after the scattering, ~P ′, is expressed by
the initial polarization, ~P , Sherman function S(θ) and two additional functions, T (θ) and U(θ)
[2]:

~P ′ = (~P · ~n+ S(θ))~n+ T (θ)~n× (~n× ~P ) + U(θ)(~n× ~P )
1 + S(θ)~P · ~n

,

which are also defined by the scattering amplitudes:

T (θ) = |f(θ)|2 − |g(θ)|2

|f(θ)|2 + |g(θ)|2 ,

U(θ) = fg∗ + f∗g

|f(θ)|2 + |g(θ)|2 .

The S, T and U functions have the following interpretation: (i) S describes the change of the
polarization vector component perpendicular to the scattering plane, (ii) T describes the change
of the polarization vector component parallel to the scattering plane, and (iii) U describes the
polarization appearing in the scattering plane, but perpendicular to the initial polarization
vector.

2.2. Møller scattering
Møller scattering (i.e., the elastic scattering of two electrons) is the second most important
process if the cross sections are considered. Its significance follows also from the fact, that it
results in a relatively large change of both the momentum and the polarization of the interacting
electron.

Interestingly, the final spin states of individual Møller electrons after the scattering are not
unambiguously determined, as the particles may be entangled [3]. It is, however, possible to
calculate the mean polarization vectors from the spin density matrix of the final state.

In a typical experimental case when the beam electron is highly polarized and the target
electron is unpolarized, the two electrons in the final state share the initial polarization
(i.e., they are only partly polarized). This effect is illustrated quantitatively in Fig. 1, in
which the dependence of the degree of polarization (the length of the polarization vector) is
shown for both electrons in the final state as a function of the scattering angle. It can be
seen that in case of symmetric scattering both electrons have the same polarization (due to
their indistinguishability), while in general one of the electrons inherits majority of the initial
polarization. The electron with higher energy is always more polarized.
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Figure 2. Distribution of simulated events as a function of the angles θ∗ and θ (between the
initial and final polarization and the initial and final momentum vectors, respectively) for a 10
nm target; (a) only Mott–scattered electrons (no energy cut), (b) higher energy Møller electrons
(above 50 keV). The curve demonstrates the theoretical prediction for Møller electrons.

2.3. Implementation in PEBSI
The PEBSI Monte Carlo simulation was originally written to simulate bremsstrahlung
accompanying passage of polarized electrons through thin target foils [4]. It was recently
upgraded towards usefulness to compute the effective Sherman function. The description of
Mott scattering was improved and polarization transfer in Møller scattering was included in the
code.

The model of Mott scattering is based on the theoretical formalism presented above. However,
calculation of the scattering amplitudes requires the use of numerical methods due to the
mathematical complexity of the problem; the method was originally proposed by Sherman [5].
In the PEBSI package their values are calculated using the ELSEPA code, in which they are
derived from the Dirac equation assuming the Thomas–Fermi–Dirac atomic potential [6].

In order to simulate Møller scattering, analytical formulae derived according to [3] are used
both for the cross section and the polarization transfer. Møller scattering regards, however,
scattering on (quasi) free electrons only. Therefore, in case when the binding energy of the
target electron cannot be neglected compared to the kinetic energy (which is typically the case
for electron shells other than the outermost one) a combination of the formula proposed by
Bote et al. [7] and the MRBEB model by Guerra et al. [8] was used to simulate electron impact
ionization.

Bremsstrahlung is the least significant process to be considered, as the emission of a
bremsstrahlung photon is unlikely to significantly change the polarization state of the electron.
Therefore, this effect was neglected in the present work.

3. Results
3.1. Depolarization
Accounting for the polarization change caused by Møller scattering in the PEBSI code allowed
us to observe interesting effects related to this interaction. The dependence between the change
of polarization and momentum directions is illustrated in the scatter plots in Fig. 2; θ∗ denotes
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Figure 3. Simulated effective Sherman function; effect of the low energy cuts on electron energy
for 100 keV electrons impinging on 10 and 500 nm Au targets.

the angle between the initial and final polarization vectors, θ – between the initial and final
momentum vectors (which is equivalent to the scattering angle4). The plots were made separately
for electrons that did not undergo Møller scattering and for more energetic Møller electrons
(above 50 keV in case of 100 keV incident beam). It can be seen that these two classes of events
differ from each other, as for Møller electrons one may expect greater change in the polarization
direction, even in case of a small change in momentum direction. This result is in agreement
with the theoretical model describing Møller scattering; the theoretical prediction was marked
in the figure with a solid line.

3.2. Simulated effective Sherman function
The impact of Møller scattering on the effective Sherman function can be analyzed by computing
its value with different low energy cuts on the energy of the electrons leaving the target
(which corresponds to the detector cuts determining the energy of the electrons recorded in
the experiment). The resulting dependences of the effective Sherman function on the scattering
angle, plotted for several values of the energy cuts, are shown in Fig. 3 for two different target
thicknesses (10 and 500 nm). It can be noticed that in case of the thin target the low energy
electrons significantly affect the value of the effective Sherman function, leading to a large
decrease of the analyzing power of the polarimeter. This effect decreases with increasing target
thickness and is no longer observed in case of the thickest target. Nevertheless, this phenomenon
is strictly related to Møller scattering, as by analyzing the energy distributions of the electrons
leaving the target we found that electrons with that low values of energy always originate from
this interaction.

The reliability of the simulation was proved by comparison with available experimental data
for a 100 keV polarized electron beam incident on 10 — 500 nm Au targets, published by
Kohashi et al. [9]. The result for a 500 nm target is shown in Fig. 4. In this case the cut on
electron energy was chosen as 50 keV, which corresponds to the conditions of the experiment.
The comparison was made in a wide scattering angle range (from 20 to 160 degrees) and the
results were found in good agreement. Although there is a systematic difference, the agreement
can be considered satisfactory given the simulation is based on a purely theoretical model, with
no empirical corrections.
4 here we refer to the effective scattering angle that may be observed in an experiment, as opposed to the
theoretical scattering angle in a single scattering event
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Figure 4. Simulated effective Sherman
function; comparison with measurement for
100 keV electrons impinging on a 500 nm Au
target.
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Figure 5. Scattering angle distribution for 100 keV electrons impinging on 10 and 500 nm Au
targets.

3.3. Parametrizations
The scope of our study was not limited to the computation of the effective Sherman function
for certain conditions. In particular, thanks to the possibility to generate an amount of data
corresponding to different target thicknesses, we shortly addressed the problem of experiment
optimization and extrapolation procedures for the Sherman function.

Optimal experimental conditions correspond to the maximum of the figure–of–merit, FoM,
defined as [9, 10]:

FoM(E, θ, d) ∝ S2
eff(E, θ, d)N(E, θ, d),

where N(E, θ, d) is the total number of electrons recorded in the detectors placed at a given
angle θ. The form of this function is intended to balance the resolution of the measurement
(which is proportional to Seff) and the statistical uncertainty (which is proportional to

√
N).

The optimal target thickness corresponds to the maximum of this function for a given energy
and scattering angle.

The distribution of the scattering angle changes significantly with the target thickness, which
results in a complicated N(d) dependence. This is illustrated in Fig. 5 where the scattering
angle distribution is shown for two different target thicknesses (10 and 500 nm). It can be seen
that in case of thicker targets electrons are more likely to be scattered at large angles. However,
the value of the effective Sherman function decreases with increasing target thickness which
makes it necessary to take both effects into account.

The effective Sherman function is often parametrized in terms of target thickness in order
to provide a functional form of the figure–of–merit and to interpolate the value of the
effective Sherman function between the measured or simulated data points. There are two
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parametrizations commonly used in the literature [9, 10, 11]:

hyperbolic: SHYP
eff (d) = Sc + S0 − Sc

1 + αH d
,

exponential: SEXP
eff (d) = Sc + (S0 − Sc) exp(−αE d).

The result of the comparison to the data from our simulation is shown in Fig. 6. It can be seen
that both parametrizations describe the simulated data reasonably well. The difference between
the two fits is more pronounced in case of lower scattering angles.

Having the results of the analyses of both the number of electrons scattered to the detectors
and the dependence of the effective Sherman function on target thickness allowed us to calculate
the figure–of–merit. The dependence of FoM on target thickness is shown in Fig. 7, for several
values of the scattering angle. It can be noticed that in this case there is a significant difference
between the two parametrizations of Seff(d); one of the two functions is found more appropriate
depending on the scattering angle. Nevertheless, applying the procedure described above to
the simulated data allows one to determine the optimal target thickness for Mott polarimetry
measurements, which is of high practical significance.

4. Summary
The values of the simulated effective Sherman function were compared to the experimental data
for 100 keV electrons and the results of these first comparisons were found highly encouraging.
Further analyses of the behavior of the Sherman function and of the general properties of studied
phenomena revealed many interesting effects that did not get enough attention in the past.

These first results suggest many prospective applications for our code, including, but not
limited to: (i) computation of the effective Sherman function, (ii) experiment optimization,
(iii) depolarization of electron beams passing through matter. Firstly, PEBSI allows to compute
the Sherman function for arbitrary experimental conditions (i.e., also when no experimental data
exist). Secondly, a comprehensive analysis and optimization of an experiment requires collecting
a large amount of data, which may be difficult to perform by a direct measurement. Thirdly,
its applications are definitely not limited to the computation of the effective Sherman function
only. The PEBSI code allows to investigate any effect related to the change of the polarization
state of an electron beam passing through matter. Such studies may be essential for many other



applications, which require the precise knowledge of the polarization of an electron taking part
in an interaction.

In order to prove the applicability of our simulation in other energy ranges in which Mott
polarimetry is used it would be necessary to compare to other experimental data, especially for
higher energies. This computation is, however, time consuming due to the low cross sections for
studied processes. Nevertheless, further validation is currently ongoing.
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