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Abstract. In the scramble for the understanding of the nature of dark matter and dark energy,
it has recently been suggested that the change of behavior of the missing energy density might
be regulated by the change in the equation of state of the background fluid. The Chaplygin
Gas (CG) model in cosmology is one of the most profound candidates for this suggestion. This
work aims to bring to light a geometric interpretation of the model by re-writing the different
toy models in terms of exact f(R) gravity solutions that are generally quadratic in the Ricci
scalar with appropriate ΛCDM limiting solutions.

1. Introduction
The Chaplygin gas model in FLRW background provides a cosmic expansion history with a
universe filled with an exotic background fluid. The model consists of a universe that transits
from a decelerating matter-dominated phase to a late-time accelerated one. However, in its
intermediate stages, it behaves as a mixture of a cosmological constant and a perfect fluid
obeying the p = wρ equation of state. One can, therefore, mimic the background evolution
history of the Universe, including the current observation of cosmic acceleration, using such
models [1, 2, 3, 4, 5, 6].

The CG model was introduced first by Chaplygin [7] as a model for aerodynamical studies.
In its original form, the mode has an equation of state in the form

p = − A
ρα

, (1)

where p and ρ are respectively pressure and energy density in a comoving reference frame with
ρ > 0, and A and α are positive constants. Chaplygin considered the case with α = 1, but a
more generalised Chaplygin gas (GCG) equation of state is obtained when 0 ≤ α ≤ 1 [8, 9, 10].
Under homogeneity considerations, the relativistic energy conservation equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (2)

in the context of FRW cosmology substituting for the equation of state yields an expression for
the density in terms of the scale factor a(t) given as

ρ =

(
A+

B

a3(1+α)

) 1
1+α

, (3)



where B here is a positive integration constant. For small values of a (a6 � B/A) the energy
density is approximated by

ρ ∼
√
B

a3
, (4)

which clearly corresponds to a dust-like dominated phase. For large values of the cosmological
radius a, it follows that

p ' −ρ⇒ ρ ∼
√
A⇒ p ∼ −

√
A , (5)

which corresponds to an empty universe with a cosmological constant
√
A and that is a de Sitter

universe, through an intermediate regime described by the equation of state for stiff matter
p = ρ. There is a possibility of interpreting the model as a “quintessential” model [6, 2, 11] with
a critical density

ρc = (A+B)
1

1+α , (6)

whereas the Hubble parameter is given through the Friedmann equation by

H2 =

(
ȧ

a

)2

=
1

3
ρ =

1

3

(
A+

B

a3(1+α)

) 1
1+α

. (7)

This model automatically leads to an asymptotic phase where the equation of state is dominated
by a cosmological constant

√
A. Subsequently, it has been shown that this model admits, under

appropriate conditions, an inhomogeneous generalisation, which can be regarded as a unification
of dark matter and dark energy models [1]. We can express the perturbed pressure as

δp =
A

ρ2
δρ , (8)

and for the density contrast we have

δ =
δρ

ρ
∝ t2/3 . (9)

A very important point here is that the evolution of density perturbations in a universe
dominated by the Chaplygin gas admits an initial phase of growing perturbations, with the
same rate as in the dust case of the cosmological standard mode [12]. Furthermore, the model
predicts an increasing value for the effective cosmological constant [2], i.e, in the context of a
Chaplygin cosmology, once an expanding universe starts accelerating it cannot decelerate any
more, a fact that we seem to be observing today.

For open or flat Chaplygin cosmologies (k = −1, 0), the Universe always evolves from a
decelerating to an accelerating epoch. For the closed Chaplygin cosmological models (k = 1),
Einstein static universes have

B =
2

3
√

3A
. (10)

The GCG cosmological model, with no additional fluid components, is compatible with structure
formation and large-scale structure only for α sufficiently small (α < 10−5), in which case it is
indistinguishable from the ΛCDM model.

The GCG of Eq. (1) is important to cosmology and it is one of the promising candidates
to explain the present accelerated expansion of the universe with simple model unifying dark
matter and dark energy [1, 12, 13] as manifestations of a single cosmic fluid [14, 15, 16, 17].



The modified Chaplygin gas (MCG) model is often used to describe the acceleration phase of
the Universe from the radiation era to the ΛCDM model. It includes a matter term [8, 18]

p = γρ− A

ρα
, 0 ≤ α ≤ 1 , (11)

where 0 < γ < 1/3 , 0 < α < 1 and B is a positive constant. It has been shown that A = 1/3
is the best fitted value to describe the evolution of the Universe from radiation regime to the
Λ-cold dark matter regime [19]. The energy density for such a model is given by

ρ =

[
A

1 + γ
+

C

a3(1+γ)(1+α)

] 1
1+α

, (12)

where C is an arbitrary integration constant. This model is a more appropriate choice to have
constant negative pressure at low energy density and high pressure at high energy density. We
can use this equation of state to describe low-surface brightness galaxies which are supposed to
be dominated by dark matter [20]. The MCG equation of state is a suitable description for an
ordinary linear barotropic fluid, but there are other barotropic fluids with equation of state being
quadratic and higher orders. For example, recently the model has been extended [21, 22, 23, 24]
so that the resulting equation of state can also recover a barotropic fluids with higher orders

pc =

n∑
i=1

γiρ
i
c −

A

ρα
, (13)

where pc and ρc are the pressure and energy density of the extended Chaplygin gas which is the
unification of the dark matter and dark energy. There is no general solution to this approach.
But if we reduce n = 1 the above expression recovers the standard MCG. Barotropic fluids with
quadratic equation of state can be recovered by setting n = 2, reducing Eq. (13) to

pc = γ1ρc + γ2ρ
2
c −

A

ραc
, (14)

where γ1, γ2, A and α are positive constants. These models give us the second-order solution

ρc =

[
A

1 + γ1
+

C

a3(1+γ1)(1+α)
e−(1+α)(1+γ1)f(ρc)

] 1
1+α

, (15)

where C = (1 + γ1)
−1 and

f(ρc) =
γ2ρc

(1 + γ1)2
− Aγ2ρc

(1 + α)(1 + γ1)2((1 + γ1)ρ
1+α
c −A)

+ γ2

∫
A(2 + α)

(1 + α)(1 + γ1)2((1 + γ1)ρ
1+α
c −A)

dρc . (16)

Note that in case of γ2 = 0, we have a vanishing f(ρc). With higher order n, we will recover
a higher-order barotropic fluid.

The generalized cosmic Chaplygin gas (GCCG) models are those Chaplygin gas models that
admit the equation of state given by [25]

p = −ρ−α
[
C + (ρ1+α − C)−ω

]
, (17)



where
C =

γ

1 + ω
− 1 , (18)

with γ a constant which now can take on both positive and negative values, and 0 > ω > −l,
l being a positive definite constant which can take on values larger than unity. In the special
case when ω = 0 one can write that C = γ − 1. The speciality of this model is its stability so
the theory is free from unphysical behaviours even when the vacuum fluid satisfies the phantom
energy condition [19]. The above equation of state satisfies the following conditions:

• it becomes a de Sitter fluid at late time and when ω = −1,

• it reduces to p = ωρ in the limit that the Chaplygin parameter γ → 0,

• it reduces to the equation of state of current Chaplygin unified dark matter models at high
energy density,

• the evolution of density perturbations becomes free from any pathological behaviour of the
matter power spectrum for physically reasonable values of the involved parameters at late
times.

By integrating the continuity equation (2) we get for the energy density

ρ(a) =

[
C +

(
1 +

A

a3(1+α)(1+ω)

) 1
1+ω

] 1
1+α

, (19)

where B is a positive integration constant. B shows the effect of Chaplygin gas, and the cosmic
effect represented by ω. A further extension of the CG model is called modified cosmic Chaplygin
gas (MCCG) [26, 19], where the EOS is further generalized to

p = γρ− 1

ρα

[
A

1 + ω
− 1 +

(
ρ1+α − A

1 + ω
+ 1

)−ω]
. (20)

Here A and γ could be both positive or negative constants, and −l < ω < 0 where l is a positive
definite constant with values larger than unity. Here also, 0 < α ≤ 1, and the case where ω = 0
gives the equation of state corresponding to the MCG. If we then put γ = 0, the equation of
state corresponding to the GCG is recovered. We can also reach back to the simplest case where
α = 1, the Chaplygin gas’s original equation of state.

Chaplygin gas models have been studied in flat Friedmann models, in terms of the recently
proposed “statefinder” parameters [27], dimensionless parameters that allow us to characterise
the properties of dark energy in a model-independent manner. It has also been shown that the
simple flat Friedmann model with Chaplygin gas can equivalently be described in terms of a
homogeneous minimally coupled scalar field φ, which has been used in a variety of inflationary
models in describing the transition from the quasi-exponential expansion of the early universe
to a power law expansion in order to understand the present acceleration of the Universe [2, 28].

The model can be re-expressed as flat Friedman universes containing a scalar field with
particular self-interaction potentials [29, 30]; in other words, a very light scalar field φ whose
effective potential V (φ) leads to an accelerated phase at the late stages of the Universe [31] by
constructing models where the matter responsible for such behaviour is also represented by a
scalar field [32, 33].

In [2, 34] a homogeneous scalar field φ(t) and a potential V (φ) have been shown to describe
Chaplygin cosmology. An extended work is done by [35] with a modified CG. Moreover, the
Chaplygin gas is the only gas known to admit a supersymmetric generalisation [36].



2. Chaplygin gas as f(R) gravity?
The main objective of this work is to study models of f(R) gravity which, when we impose the
Chaplygin gas equations of state (EoS) to their effective pressure and energy density, produce
viable exact solutions that reduce to the ΛCDM scenario in the approximate cosmological limits
[37], thus giving a geometric interpretation of Chaplygin gas cosmological models. But first
let us briefly discuss f(R) models of gravity. These are models of modified gravity introduced
to address the problems and shortcomings of GR, especially in light of the current accelerated
epoch of cosmic expansion. They involve modified Einstein-Hilbert action of the form

A =
1

2

∫
d4x
√
−g [f(R) + 2Lm] . (21)

The generalised field equations, using the standard variational principle w.r.t the metric, are
given by

f ′Gab = Tmab +
1

2
(f −Rf ′)gab +∇b∇af ′ − gab∇c∇cf ′ , (22)

where f ′, etc. are shorthands derivatives of f = f(R) w.r.t the Ricci scalar R, and Tmab is the
energy-monetum tensor for matter.

These models are among the most widely studied modified theories of gravity [38, 39, 40, 41].
The extra degree of freedom in these models gives us the freedom to explain accelerated cosmic
expansion and structure formation of the Universe without adding any extra form of exotic
matter.

Assuming the Universe is filled with standard matter and curvature sources, its total energy
density, isotropic pressure, anisotropic pressure and heat flux terms are given, respectively, by

ρ ≡ ρm
f ′

+ ρR , p ≡ pm
f ′

+ pR , πab ≡
πmab
f ′

+ πRab , qa ≡
qma
f ′

+ qRa . (23)

Up to first-order perturbations, the curvature fluid components are defined as:

ρR =
1

f ′

[
1
2(Rf ′ − f)−Θf ′′Ṙ+ f ′′∇̃2R

]
, (24)

pR =
1

f ′

[
1
2(f −Rf ′) + f ′′R̈+ f ′′′Ṙ2 + 2

3

(
Θf ′′Ṙ− f ′′∇̃2R

)]
, (25)

qRa = − 1

f ′

[
f ′′′Ṙ∇̃aR+ f ′′∇̃aṘ− 1

3f
′′Θ∇̃aR

]
, (26)

πRab =
f ′′

f ′

[
∇̃〈a∇̃b〉R− σabṘ

]
. (27)

For FLRW spacetimes, the Ricci scalar R is given by

R = 2Θ̇ +
4

3
Θ2 , (28)

where Θ is the cosmic expansion parameter related to the cosmological scale factor a(t) and the
Hubble parameter H(t) via the equations

Θ ≡ 3
ȧ(t)

a(t)
= 3H(t) . (29)

If the Ricci scalar varies slowly, i.e., if R is almost constant in time, during steady-state
exponential expansion in a de Sitter spacetime (such as during inflation or late-time evolution),
the approximation Θ̇→ 0 results in

R =
4

3
Θ2 = const . (30)



Using this approximation, if we consider the background curvature energy density and isotropic
pressure terms defined in Eqs. (24) and (25) above, we obtain the simple relation

ρR =
1

4

[
R(f ′ + 1)− 2f

]
= −pR . (31)

This equation of state, with an effective EoS parameter wR = −1, provides the condition for an
exponential (accelerated) expansion with a constant Hubble parameter. The energy density ρR
(with its negative pressure pR) remains constant and can be interpreted as playing the role of
the cosmological constant Λ.

The plan here is, given the different equations of state for the Chaplygin gas models, to
come up with models of f(R) gravity that can mimic those models. In other words, we want
to do away with these exotic matter forms (Chaplygin gas models) in favor of a modification
in the gravitational Lagrangian, i.e., geometry. To solve for the appropriate forms of f(R)
corresponding to different Chaplygin gas equations of state, we solve the resulting differential
equations using the symbolic computational packages of Maple. This is possible because of the
nature of the approximations made, namely, the slowly-changing Ricci scalar assumption. Such
(analytic) solutions are intractable if this assumption is relaxed, and a future work will involve
a fully numerical computation of such solutions, once the appropriate initial conditions are fully
understood.

Comparing the original and generalized Chaplygin gas EoS (1) with (31), we obtain

pR = −ρR = − A

ραR
, (32)

which, upon using Eq. (24), leads to the o.d.e

R
f(R)

dR
− 2f(R) +R = 4A

1
α+1 . (33)

Solving this o.d.e yields

f(R) = R+ C1R
2 − 2A

1
α+1 (34)

for an arbitrary (integration) constant C1. We note that the ΛCDM solution f(R) = R− 2Λ is
already a particular solution with C1 = 0 and A = Λα+1. In particular, if α = 0, then A = Λ,
from which, going back to Eq. (32), one concludes ρR = Λ.

If we include the linearized Laplacian term in Eqs. (24) and (25) and use the eigenvalue −k2

a2

of the covariantly defined Laplace-Beltrami operator ∇̃2 on (almost) FLRW spacetimes

∇̃2R = −k
2

a2
R (35)

for a comoving wavenumber k, we obtain the second-order o.d.e

D2Rf ′′(R)−Rf ′(R) + 2f(R)−R+ 4A
1

α+1 = 0 , (36)

where here we have defined

D2 ≡ 4(2 + 3α)

3(1 + α)

k2

a2
. (37)

The solution of Eq. (36) is given, for arbitrary constants C2, C3, by

f(R) = R+ C2

[
R2 − 2RD2

]
+ C3

[
(R2 − 2RD2)Ei

(
1,− R

D2

)
+ (R−D2)D2e

R
D2

]
− 2A

1
α+1 ,

(38)



which should reduce to the quadratic solution (34) for negligible values of D2, i.e., for small
first-order contributions to the energy density and pressure terms.

For the MCG EoS of Eq. (11) , we can write

pR = γρR −
A

ραR
, (39)

and the resulting f(R) model generalizes to

f(R) = R+ C4R
2 − 2

(
A

γ + 1

) 1
α+1

, (40)

where C4 is an arbitrary integration constant.
The ΛCDM solution is a limiting case of this generalized model when C4 = 0 and

A = (γ + 1)Λα+1. In particular, if α = 0 = γ, then A = Λ.
Following similar arguments as in the preceding subsection, if we include the linearized

Laplacian contributions to the energy density and pressure, we get Eq. (36) generalized to

D2Rf ′′(R)−Rf ′(R) + 2f(R)−R+ 4

(
A

γ + 1

) 1
α+1

= 0 , (41)

the solution of which can be given by

f(R) = R+ C5

[
R2 − 2RD2

]
+ C6

[
(R2 − 2RD2)Ei

(
1,− R

D2

)
+ (R−D2)D2e

R
D2

]
− 2

(
A

γ + 1

) 1
α+1

, (42)

for an arbitrary integration constants C5 and C6. This solution obviously generalizes Solutions
(34),(38) and (40) and should reduce to the quadratic solution (34) for vanishingly small B2

values. In [42], it has been shown that any quadratic Lagrangian leading to an isotropic,
homogeneous cosmological model takes the form

f(R) = R− 2Λ− 1

6
βR2 , (43)

where β is an arbitrary, real constant. If we keep only the quadratic solution in (42), i.e., if we
set C6 = 0, the Lagrangian (43) corresponds to the choice

C5 = −1

6
β ,D = 0 , A = (γ + 1)Λα+1 . (44)

Another interesting fact worth pointing out here is that the condition for the existence of a
maximally symmetric vacuum solution in f(R) gravity [42]

R0f
′(R0) = 2f(R0) (45)

leads to the quadratic solution resulting in the constraint

R0

(
1− 2C5D

2
)
− 4

(
A

γ + 1

) 1
α+1

= 0 . (46)



The corresponding GR de Sitter, anti-de Sitter and Minkowski solutions R0 = 4Λ (respectively
for Λ > 0 ,Λ < 0 and Λ = 0) are obtained when C5D

2 = 0 and A = (γ + 1)Λα+1.
The so-called modified generalized Chaplygin gas (mGCG) model is described by a barotropic

equation of state of the form [43, 44]

p = βρ− (1 + β)
A

ρα
. (47)

Models of f(R) gravity that satisfy the condition (31), at the sam time mimicking the mGCG,
can be shown to be governed by the same equation as (33) and admit the same solutions (34),
provided β 6= −1. On the other hand, if linearized Laplacian terms are included, then the
corresponding differential equation in f(R) generalizes to

E2Rf ′′(R)−Rf ′(R) + 2f(R)−R+ 4A
1

α+1 = 0 , (48)

where we have defined

E2 ≡ 4 [2 + 3α+ 3β(1 + α)]

3(1 + α)(1 + β)

k2

a2
. (49)

Worthy of note is that this equation and its solution

f(R) = R+ C7

[
R2 − 2RE2

]
+ C8

[
(R2 − 2RE2)Ei

(
1,− R

E2

)
+ (R− E2)E2e

R
E2

]
− 2

(
A

γ + 1

) 1
α+1

, (50)

reduce to their generalized counterparts of Eqs. (36) and (38) when β = 0.

3. Conclusion
To summarize, we have explored exact f(R) gravity solutions that mimic Chaplygin-gas inspired
ΛCDM cosmology for the so-called original, generalized, modified and generalized modified
Chaplygin gas equations of state. The resulting solutions are generally quadratic in the Ricci
scalar, but have appropriate ΛCDM solutions as their limiting cases. These solutions, given
appropriate initial conditions, can be potential candidates for scalar field-driven early universe
expansion (inflation) and dark energy-driven late-time cosmic acceleration.

The solutions discussed here are based on a slowly-changing Ricci curvature assumption and
can generally be obtained using symbolic computing environments such as Maple. However, more
realistic solutions should relax this assumption, and consider higher-order corrections as well.
Such models are generally complex to solve, and advanced numerical computations require more
physically motivated initial conditions, currently not fully understood, but which the authors
would like to explore further in a future work.
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