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Abstract. We demonstrate an efficient approach to numerical modeling of optical properties
of large-scale structures with typical dimensions much greater than the wavelength of light.
For this purpose, we use the finite-difference time-domain (FDTD) method enhanced with
a memory efficient Locally Recursive non-Locally Asynchronous (LRnLA) algorithm called
DiamondTorre and implemented for General Purpose Graphical Processing Units (GPGPU)
architecture. We apply our approach to simulation of optical properties of organic light
emitting diodes (OLEDs), which is an essential step in the process of designing OLEDs with
improved efficiency. Specifically, we consider a problem of excitation and propagation of surface
plasmon polaritons (SPPs) in a typical OLED, which is a challenging task given that SPP decay
length can be about two orders of magnitude greater than the wavelength of excitation. We
show that with our approach it is possible to extend the simulated volume size sufficiently so
that SPP decay dynamics is accounted for. We further consider an OLED with periodically
corrugated metallic cathode and show how the SPP decay length can be greatly reduced due to
scattering off the corrugation. Ultimately, we compare the performance of our algorithm to the
conventional FDTD and demonstrate that our approach can efficiently be used for large-scale
FDTD simulations with the use of only a single GPGPU-powered workstation, which is not
practically feasible with the conventional FDTD.

1. Introduction
Improvement of optical devices design by numerical simulation is generally less expensive than
multiple iterative trial fabrication. However, the simulation methods are often limited by the
computational power. Particularly, full-wave optical simulation requires fine space and time
meshes. The treatment of the whole device in such conditions implies large memory and
computing performance, which is on the threshold of the current computer technology, or even
far beyond it. So there exists a range of problems that has not been solved numerically yet due
to computer cost limitations, such as a whole-device full wave simulation of OLED [1], optical
antennae, and others [2].

In this work we demonstrate the practical usage of a high performance FDTD [2] code



DTmaxwell [3]. The aim of its development was to fully utilize the computational performance
of a GPGPU-powered computer (single node or cluster) so that by minimizing the computation
time and reformulating memory requirements we may broaden the scope of simulated problems in
the area of electromagnetic modeling. DTmaxwell was developed on the base of finite-difference
time domain algorithm DiamondTorre [4, 5] for CUDA GPGPU. DiamondTorre belongs to the
class of Locally-Recursive non-Locally Asynchronous (LRnLA) algorithms and will be explained
briefly in the following sections. DTmaxwell code implements all necessary typical features for
FDTD simulation:

e use of GPGPU accelerators;

e 3D geometry;

e 4th order approximation for finite differences in space; 2nd order approximation in time;
e Perfectly Matched Layer (PML) boundaries [6];

e Total Field/Scattered Field (TF/SF) source;

e arbitrary model for material equations, including Drude-Lorenz model for metals;

e performance of 1 billion Yee cells updates per second on one GPU;

e linear scalability on multi-GPU clusters.

Previously, we have studied the code performance and scalability [7]. High computation rate
of more than 1 billion Yee cell updates per second on one device was achieved. The scaling
for ~ 1000 devices is linear for weak scaling, and saturates at ~ 100 for strong scaling. The
maximal achieved performance on a TSUBAME 2.5 supercomputer was 0.65-10'2 Yee Cells per
second for a 3D domain with 0.3 - 10'2 Yee cells in total. This number of cells corresponds, for
example, to 1 cubic millimeter domain for wave optics problems.

In this work, we apply DTmaxwell code for modeling of optical properties of OLEDs. We
take our previous work as the base for the current study: [8] describes a numerical investigation
of an OLED by the FDTD code EMTL [9]. Presently we use the problem described in the
mentioned paper as a test case for assessing capabilities and performance of DTmaxwell code,
and for comparing the results and performance with EMTL, which utilizes traditional FDTD
time stepping algorithm.

2. Problem statement

OLEDs are multilayered electroluminescent devices [10]. Light emission is generated via the
recombination of excitons in the organic layer in the close proximity to the metallic cathode.
The generated emission excites SPPs at the surface of the metallic cathode in OLEDs thus
creating a major loss channel leading to the low outcoupling efficiency seen in these devices [8].
One of the methods used to increase the light outcoupling efficiency of OLEDs consists in
extracting the energy lost to SPPs via corrugation at the cathode surface. SPPs scatter off
the corrugation as they propagate along the metal-organic interface thereby recovering the light
outcoupling efficiency of OLEDs.

The improvement of the light outcoupling efficiency of OLEDs has been studied both
theoretically [11-21] and experimentally [14, 17]. In order to accurately describe the interaction
of emission in OLED with its multilayered and corrugated geometrical structure, numerical
simulations are required, for which FDTD models are offering the best scalability and
performance on parallel computers. However, large transverse computation domains are
necessary so that SPPs propagation and decay is accurately captured. Thus, application of the
FDTD for materials with long decay length in optical range is limited, since the computational
domain size is restricted by the computer power and memory. Previous FDTD simulations
of SPP decay in OLEDs were 2D [14, 16] or included only a fraction of decay length. Since
aluminium has shorter decay length it has been simulated in 3D [21].
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Figure 1. OLED structure in the numerical problem statement

In the current work, we use DTmaxwell code to demonstrate that it is possible to extend the
simulation geometry sufficiently so that SPP decay dynamics is accounted for even for materials
with long decay length such as silver. We further consider an OLED with periodically corrugated
metallic cathode and show how the SPP decay length can be greatly reduced due to scattering
off the corrugation. The basic structure of a simulated region is shown in Fig. (Figure 1).

The multi-layered OLED is placed inside a box with the lateral (X and Y) dimensions Lx L (L
is a variable numerical parameter). The Z-axis corresponds to the layers normal direction. The
bottom layer is a metal substrate, its height is 150 nm. Its dispersion is simulated by the Drude
model with the parameters corresponding to silver (w, = 1.3666 - 10%s71 v = 2.69 - 1013s71).
The second layer is an organic layer with 180 nm height and its refractive index is equal to
Norg = 1.75. The optical wave source is simulated as a point dipole inside this layer, 80 nm
above the metal substrate, placed in the center of the computational domain (x = y = L/2).
Through it a long pulse is injected with central wavelength A = 550 nm. Next is ITO layer,
its height is equal to 100 nm and n;po = 1.8. Upper halfspace, as well as space around the
L x L box, is treated as glass, ny = 1.5. Corrugation of the cathode is simulated by metal
cylinders placed regularly on the cathode surface. This setup corresponds to the one studied
in [8], however other types of corrugation (including the random one) may be used.

In order to probe the SPP propagation, the numerical field detectors are placed on the
interface between the cathode and the organic layer at regular intervals, along the straight line
(y = L/2) passing through the c enter of the computational domain (x = L/2).

3. Computational considerations

The problem under consideration is essentially multiscale. The mesh step should resolve
the smallest scale (cathode skin length is estimated as dspp ~ 20 nm under the specified
conditions). On the other hand, the transverse size L should be large enough in order to
accurately describe the SPP propagation and decay. The SPP decay length is directly related
to the SPP dispersion relation at the metal-organic interface kspp(w): Laecay ~ 1 /Imkspp,

where kdpp = w/c\/(eorgsm(w))/(eorg +em(w)), with gy, and e€gpg = nng being the dielectric
constants of the metallic and organic layers. For the given material parameters Lgecqy ~ 50
mkm.

For the 3D simulation, the necessary numerical parameters are estimated as follows. The
mesh step is chosen to be Az = 5 nm for the second order scheme in [8]. It is determined by the
distance from the dipole to the cathode and the cathode skin length. The time step is limited
by the Courant condition and is chosen as At ~ 6.7-107!8 s (light velocity is equal to one in the
chosen system of units, units for distance are mkm; in this system At = 0.002). The required
number of time steps for the light to travel 1 mkm is ~ 500.

Taking all the mentioned limitations into account, the total number of processed Yee cells



Figure 2. DiamondTorre algorithm. The intersection of domain of influence and domain
of dependency of two 2D diamond-shaped bases in 3D time-space (left). Data dependencies
between the adjacent DiamondTorres (right). They are directed from green prisms into purple
one; from purple prism to yellow prisms. Red and purple prisms calculations are completely
independent from each other and may be processed asynchronously.

for the problem (including time steps) should be of the order of 10!!. The two following issues
stand in the way of efficiently performing such simulations with the traditional FDTD algorithms,
especially on GPGPUs. The FDTD simulation is memory-bound. Some popular FDTD codes
show sufficient (up to 10° Yee cells per second) performance on small sizes, but their performance
drops significantly with the increase of data size [22]. This way the accessible problem size is
limited by the cumulative GPU device memory, and the CPU RAM (which has much larger
size) can not be efficiently utilized. The second issue is that with the use of many-node clusters
inter-node data transfers become the limitation of computation time. As a consequence, big
domains for SPP problems may not be simulated with the state-of-art solutions, even with the
use of the modern supercomputing power.

The algorithm DiamondTorre, which is used in DTmaxwell, provides a solution for the
aforementioned issues. The ”calculation window” approach allows the use CPU memory and
even on-disk swap-file, so the limitation on problem size is lifted by an order of 10 + 100. Due
to the use of time-space approach, concurrency is implemented in such way that data transfers
are completely concealed by computation. These concepts are explained below.

3.1. Time-space approach
DiamondTorre follows the line of LRnLA algorithms: decomposing the discrete time-space
computational domains, occupied by Yee cells to be updated, into time-space shapes. These
shapes are then processed in the the order satisfying the data dependencies determined by the
local stencil used in the discretization of Maxwell’s equations. Time-space decomposition allows
one to implement processing functions for the shapes that conduct computation on multiple
time layers [5, 7]. The prism in Figure 2 represents a decomposition shape for DiamondTorre
algorithm — the computation proceeds with the cells, that fall inside it. These cells are on
several time layers, but the construction of the algorithm ensures the correct processing order
and final computation result.

A row (along the Y axis) of such prisms may be computed asynchronously (red and purple in
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Figure 3. Asynchronous DiamondTorres. The different colors correspond to different CUDA
kernels, which are possibly executed on different devices

Figure 2). Several stages of such asynchronous computations propel all cells of the computation
mesh forward by a fixed amount of time steps (prism height).

3.2. Calculation window

To perform the DiamondTorre computation only the data that falls into its projection are needed
in the device memory. A “calculation window” is implemented, which moves from right to left
(according to Figure 2) of the X axis, and encloses an active DiamondTorre at each frame.
Data load and save to/from global RAM are performed asynchronously with the computations.
Performance does not decline in case the computation time of DiamondTorre is longer than the
time, necessary for memory copy to/from the device. Since computation time increases linearly
with its height, and the copy time is constant, with the right parameter choice host-device
transfers are completely concealed.

3.8. Concurrency on Y axis

Since all DiamondTorre’s standing side-by-side along Y axis are asynchronous, they may be
processed by different devices inside one node, as well as by different nodes. (fig. 3) In case the
number of DiamondTorres per device is high enough, the computation time conceals the data
transfer.

As a result, the data transfers may be concealed completely. This alleviates the memory-
bound restriction of the numerical scheme. It opens a way for the solution of a new wide
range of industrial problems, for which computing power was not enough previously. Algorithm
parameters (such as the prism height and problem size) allow not only qualitative but also
quantitative estimates of the performance and parallel scaling.



4. Performance evaluation
The performance evaluation in [7] has been carried out for a model problem with no physical
significance. Thus, the numerical parameters were chosen to show the largest performance
possible.

Here we make the performance test for the target problem, which is characterized by

e wide and flat geometry (Nz = Ny > Nz);
e inclusion of the Drude model dispersion to the material equations

e on-the-fly diagnostics of the physical parameters

The performance measured is ~ 0.54-10° Yee cell updates per second for one K20x GPGPU.
One cell data occupies 68 B of memory, so the computation time for different problem sizes may
easily be estimated assuming the complete conceal of device to CPU memory copies.

e 10 x 10um? domain — 70 GB, 9 hours;
e 20 x 20pm? domain — 280 GB, 70 hours;
e 40 x 40pem? domain — 1100 GB, 580 hours .

With the use of multiple GPUs, 100% efficiency parallel scaling was confirmed in the previous
study, so, with the use of several devices, the simulation time is divided by their number.

The performance comparison with EMTL [9] code based on traditional algorithms is shown in
Figure 4. The performance is measured for the same problem statement. The difference is in the
numerical scheme (4th order spatial finite difference is used in DTmaxwell, 2nd order in EMTL).
DTmaxwell has been run on one NVIDIA K20x GPGPU at a single workstation, EMTL has
been run on 2 nodes (Xeon E5-2690) of the supercomputer MVS-10p of the Joint Supercomputer
Center of Russian Academy of Sciences. Formally these two systems have comparable peak
floating point performance of approximately of 100 GFlop/s. It can be seen from the comparison,
that the performance of DTmaxwell is more than twice higher than that of EMTL. We also stress
here that DTmaxwell has been run on a single workstation, which is only possible due to the
memory efficient implementation of LRnLA algorithm.

5. Simulation results

We performed two simulations to demonstrate the importance of modelling of OLED’s large
geometric sizes and to show the effect of regular corrugation in the cathode. The maximum area
size that fits into the CPU memory of one computational node (128 GB) is 18 x 18 x 0.64 mkm.
The maximal whole OLED size in our simulations is near to 40x40 mkm: 7680x7680x 128 Yee
cells with space step Ar=5nm. We performed all simulations with high-order FDTD numerical
scheme with accuracy of 4th order in space and 2nd order in time on hybrid cluster computer
K100 (Keldysh Institute of Applied Mathematics, RAS) and Tsubame-2.5 supercomputer using
several compute nodes.

In all simulations the source is a vertical dipole (E, component) placed at the center of
OLED. The distance between the dipole and cathode is 80 nm. The dipole generates signal
with narrow-band spectra of 500 nm wavelength. Sensors on the cathode detect time-varying
E, component of electromagnetic field at different distances r from the center of simulated
region. This field component corresponds to the surface plasmon polariton mode (SPP) of
the emmited light. Decay of this mode depends on the properties of the cathode. Except for
geometrical divergence of SPP wave with the distance r (proportional to 1/r), this mode is also
exponentially absorbed via interaction with cathode. The length of SPP decay can be very large
(about 20-40 micromenters) and corrugation of the cathode significantly decreases this length.

The EM-field visualization for the planar OLED is shown in Figure 5. The propagation of
SPP may be easily traced on the metal surface. Figure 6 shows the difference between the
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Figure 4. Performance of EMTL (parallel FDTD CPU code based on traditional algorithm)
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Figure 5. 2D slices of the 3D distribution of the EM field at the two time instants

corrugated and planar OLED. Estimated plasmon decay length is equal to 24 micrometers for
the planar structure and only 1.7 micrometers for the corrugated structure.

6. Conclusion

The simulation of OLED geometry for the large area (40 x 40 x 0.64 mkm) has been performed
on clusters of multiple GPGPUs. This way we have confirmed the applicability of DTmaxwell
code to large physical problems.

Taking into account the scaling efficiency of the code, we confirm that significantly larger
sizes may be simulated with the use of larger GPU clusters. In the simulation, we have traced
the SPP propagation and its decay. The result shows that it is necessary to include large domain
size in the simulation to reproduce all the relevant SPP phenomena in OLED simulation. The
role of the corrugated cathode structure in enhancing the efficiency of light emission from the
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Figure 6. Maximum |E,|?> component of SPP as a function of the distance from source for
planar and corrugated cathodes. The cathode is corrugated with cylindrical holes with depth of
50 nm and diameter of 200 nm. Corrugation period is 400 nm. Fitted lines are proportional to
exp(—r/1.7) for the corrugated cathode and exp(—r/24) for the planar OLED (r is measured in

micrometers).

OLED, which was studied earlier, is now confirmed by the simulation of much larger scale.

Abbreviations
LRnLA Locally Recursive non-Locally Asynchronous

FDTD Finite Difference Time Domain

PML Perfectly Matched Layer

EM Electro-Magnetic

TF/SF Total Field/Scattered Field

GPGPU General Purpose Graphical Processing Unit
GPU Graphical Processing Unit

SPP Surface Plasmon Polariton

OLED Organic Light Emitting Diode

ITO Indium Tin Oxide

CUDA Compute Unified Device Architecture
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