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Abstract. The present paper concerns the results of computational studying dynamics of the 

atmospheric pollutants (dioxide of nitrogen, sulphur etc) concentrations in an atmosphere of 

the industrial cities (Odessa) by using the dynamical systems and chaos theory methods. A 

chaotic behaviour in the nitrogen dioxide and sulphurous anhydride concentration time series 

at several sites of the Odessa city is numerically investigated. As usually, to reconstruct the 

corresponding attractor, the time delay and embedding dimension are needed. The former is 

determined by the methods of autocorrelation function and average mutual information, and 

the latter is calculated by means of a correlation dimension method and algorithm of false 

nearest neighbours. Further, the Lyapunov’s exponents spectrum, Kaplan-Yorke dimension 

and Kolmogorov entropy are computed. It has been found an existence of a low-D chaos in the 

time series of the atmospheric pollutants concentrations.      

1.  Introduction 

The last decades have seen a great progress in the understanding, analysis, modelling and evet 

prediction of the evolutionary dynamics of nonlinear complex systems. Various methods and 

algorithms of the modern theory of dynamical systems and a chaos theory became a powerful tool in 

computational studying complex non-linear statistical systems [1-14]. Many studies in different fields 

of science and technique have appeared, where the chaos theory methods were applied to a great 

number of dynamical systems. The studies concerning non-linear behaviour in the time series of 

atmospheric constituent concentrations are sparse, and their outcomes are ambiguous. In ref. [5] there 

is an analysis of the NO2, CO, O3 concentrations time series and is not received an evidence of chaos. 

Also, it was shown that O3 concentrations in Cincinnati (Ohio) and Istanbul are evidently chaotic, and 

non-linear approach provides satisfactory results [6]. In Ref. [14] it has been fulfilled the detailed 

analysis of the NO2, CO, CO2 concentration time series in the Gdansk region (Polland) and it has been 

definitely obtained the evidence of a chaos. Moreover it has been given a short-range forecast of 

atmospheric pollutants time evolution using non-linear prediction method. These studies show that 

chaos theory methodology can be applied and the short-range forecast by the non-linear prediction 

method can be satisfactory. Time series of concentrations are however not always chaotic, and chaotic 

behaviour must be examined for each time series.  

In this work we study the temporal dynamics of the atmospheric constituents concentration in the 

Odessa region by using the non-linear prediction and chaos theory methods [3,4,12-27]. A chaotic 
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behaviour in the nitrogen dioxide and sulphurous anhydride concentration time series is numerically 

investigated.  The topological and dynamical invariants, in particular, the Lyapunov’s exponents 

spectrum, Kaplan-Yorke dimension, Kolmogorov entropy etc are computed. It has been found an 

existence of a low-D chaos in the time series of the atmospheric pollutants concentrations.      

2.  The data for computational studying and method of testing chaos in time series  

In our study, the nitrogen dioxide (NO2) and sulphurous anhydride (SO2) concentration data observed 

in the atmosphere of the Odessa city from 1976 till 2000 years [3]. The multi-year hourly 

concentrations (one year total of 20x8760 data points, 1990) are analyzed. The temporal series of 

concentrations (in mg/m
3
) of the NO2 and SO2 are presented in figure 1 and 2.  
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Figure 1. The temporal series of concentrations (in mg/m
3
) of the NO2  
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Figure 2. The temporal series of concentrations (in mg/m
3
) of the of the SO2 

 

 In Refs. [2-4,11-18] it has been developed computational code for studying chaotic features of the 

complex non-linear  systems and in details described a procedure of testing of the  chaos elements in 

the corresponding time series. Here we are limited only by the key aspects. As usually, we consider 

scalar measurements  s(n)=s(t0+ nt) = s(n), where t0 is a start time, t is time step, and n is number of 

the measurements. In a general case, s(n) is any time series, but here s(n) corresponds to an 

atmospheric pollutant concentration. The first fundamental step of modelling is in reconstruction of 

the corresponding phase space using as well as possible information contained in s(n). From the 

mathematical viewpoint, this procedure results in set of d-dimensional vectors y(n) replacing scalar 

measurements. One should further to operate with lagged variables s(n+), where  is some integer to 

be defined, results in a coordinate system where a structure of orbits in phase space can be captured. 

Using a set of the time lags to create a vector in d dimensions, y(n)=[s(n), s(n + ), 

s(n + 2),..,s(n +(d1))], the required coordinates are provided. The dimension d is defined as an 

embedding dimension, dE.  

 In Refs. [2-4] there are presented a few approaches to the choice of proper time lag. This point is    

important for the subsequent reconstruction of phase space.  First approach [2] is to compute the linear 

autocorrelation function CL() and to look for that time lag where CL() first passes through 0. 



 

 

 

 

 

 

 The alternative approach is based on using method of an average mutual information. Let us 

remind that the mutual information I of two measurements ai and bk is symmetric and non-negative, 

and equals to 0 if only the systems are independent. The average mutual information between any 

value ai from system A and bk from B is the average over all possible measurements of IAB(ai, bk). In 

Ref. [4] it is suggested, as a prescription, that it is necessary to choose that  where the first minimum 

of I() occurs. 

 The fundamental goal of the dE calculation is in the further reconstruction of the Euclidean space R
d
 

large enough so that the set of points dA can be unfolded without ambiguity. The embedding 

dimension, dE, must be greater, or at least equal, than a dimension of the corresponding chaotic 

attractor, dA, i.e. dE > dA. The correlation integral analysis is one of the widely used techniques to 

investigate the signatures of chaos in a time series. This method is based on using the correlation 

integral, C(r). As usually, if the corresponding time series is characterized by an attractor, then the 

correlation integral C(r) is related to the radius r as  
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where d is correlation exponent. In a case of the chaotic system the correlation exponent attains 

saturation with an increase in the embedding dimension. The saturation value of this exponent is 

defined as the correlation dimension (d2) of the attractor (see details in Refs. [2-4,9-22]). The 

technique of application the correlation integral method (say, the Grassberger-Procaccia algorithm [9]) 

is presented in Refs. [2-4,8,9]. Another method for determining dE comes from asking the basic 

question addressed in the embedding theorem: when has one eliminated false crossing of the orbit with 

itself which arose by virtue of having projected the attractor into a too low dimensional space? This 

method is called as the method of false nearest neighbours [11]. As a rule, the simultaneous 

application of two methods provides more exact determination dE.  It is noteworthy that the nearest 

integer above the saturation value provides the minimum or optimum embedding dimension for 

reconstructing the phase-space or the number of variables necessary to model the dynamics of the 

system. This concept can be applied, since the embedding dimension determined by both the 

correlation dimension method and the algorithm of false nearest neighbours are identical. 

 The further important step in studying the chaotic time series of the dynamical system is 

determination of predictability, which can be estimated by the Kolmogorov entropy. The Kolmogorov 

entropy is proportional to a sum of the positive Lyapunov’s exponents.  Let us remind that the 

Lyapunov’s exponents spectrum is one of the fundamental dynamical invariants for non-linear system 

with chaotic behaviour.  

 According to definition, the Lyapunov’s exponents are related to the eigenvalues of the linearized 

dynamics across the attractor. These parameters indicate the complexity of dynamics of the studied 

system. As usually, the positive values the Lyapunov’s exponents show local unstable behaviour of the 

system, and respectively, their negative values show stable behaviour. The largest positive value of the  

Lyapunov’s exponents determines some average prediction limit. Since the Lyapunov’s exponents are 

defined as asymptotic average rates, they are independent of the initial conditions, and hence the 

choice of trajectory, and they do comprise an invariant measure of the attractor. An estimate of this 

measure is a sum of the positive Lyapunov’s exponents. The estimate of the attractor dimension is 

provided by the conjecture dL and the Lyapunov’s exponents are taken in descending order. The 

dimension dL gives values close to the dimension estimates discussed earlier and is preferable when 

estimating high dimensions. To compute Lyapunov’s exponents, we use a method with linear fitted 

map [2,4,20], although the maps with higher order polynomials can be used too. 

3.  Results 

Table 1 summarizes the results for the time lag, which is computed for first ~10
3
 values of time series. 

The autocorrelation function crosses 0 only for the NO2 time series, whereas this statistic for other 



 

 

 

 

 

 

time series remains positive. The values, where the autocorrelation function first crosses 0.1, can be 

chosen as , but in  [1] it has been  showed that an attractor cannot be adequately reconstructed for 

very large values of . So, before making up final decision we calculate the dimension of attractor for 

all values in Table 1.  

The outcome is explained not only inappropriate values of  but also shortcomings of correlation 

dimension method [2]. If algorithm [1] is used, then a percentages of false nearest neighbours are 

comparatively large in a case of large . If time lags determined by average mutual information are 

used, then algorithm of false nearest neighbours provides dE = 6 for all air pollutants. 

 

Table 1. Time lags (hours) subject to different values of  CL and first 

minima of average mutual information (Imin1) for the time series of 

NO2, SO2 concentrations for the sites of the Odessa city (1990) 

 NO2 SO2 

CL = 0 - - 

CL = 0.1 142 239 

CL = 0.5 7 14 

Imin1 10 20 

 

Table 2 shows the calculated parameters: correlation dimension (d2), embedding dimension (dE), 

two Lyapunov exponents, E(1,2),  Kaplan-Yorke dimension (dL), and average limit of predictability 

(Prmax, hours) for the NO2, SO2 concentration time series in the Odessa region (for two measurement 

sites) during the period: Jan.-Dec., 1989-1990). From the table 2 it can be noted that the Kaplan-Yorke 

dimensions, which are also the attractor dimensions, are smaller than the dimensions obtained by the 

algorithm of false nearest neighbours. It is very important to pay the attention on the presence of the 

two (from six) positive Lyapunov’s exponents i . This fact suggests that the system broadens in the 

line of two axes and converges along four axes that in the six-dimensional space. The time series of 

SO2 at the site 2 have the highest predictability (more than 2 days), and other time series ( in 

particular, the NO2 concentration) have the predictabilities slightly less than 2 days.   

 

Table 2. The correlation dimension (d2), embedding dimension (dE), 

first two Lyapunov exponents, E(1,2),  Kaplan-Yorke dimension 

(dL), and the Kolmogorov entropy, average limit of predictability 

(Prmax, hours) for the time series of the NO2 and SO2 concentrations 

(Odessa city, 1990) 

 Site 1 

(Odessa) 

NO2 

Site 1 

(Odessa) 

SO2 

Site 2 

(Odessa) NO2 

Site 2 

(Odessa) 

SO2 

1 0.0187 0.0166 0.0191 0.0153 

2 0.0059 0.0062 0.0049 0.0048 

d2 5.28 1.62 5.26 3.48 

dE 6 6 6 6 

dL 4.09 5.04 3.92 4.63 

Kentr  0.025 0.023 0.024 0.020 

Prmax 41 46 42 48 

4.  Conclusions 

 

To conclude, in this work we have studied a dynamics of variations of the atmospheric pollutants 

(the time series of the dioxide of nitrogen, sulphur etc) concentration in atmosphere of the Odessa city 



 

 

 

 

 

 

by using the dynamical systems and chaos theory methods. A chaotic behaviour in the nitrogen 

dioxide and sulphurous anhydride concentration time series at several sites of the Odessa city is 

numerically investigated for the first time.  As usually, to reconstruct the corresponding attractor, the 

time delay and embedding dimension were determined. The time delay was calculated on the basis of 

methods of autocorrelation function and average mutual information, and the embedding dimension 

was calculated by means of the correlation dimension method and algorithm of false nearest 

neighbours. Further, the Lyapunov’s exponents spectrum, Kaplan-Yorke dimension and Kolmogorov 

entropy are calculated. Our computational study has shown an existence of a low-and high-D chaos in 

the atmospheric pollutants fluctuations dynamics in the Odessa. This conclusion allows further to 

develop the corresponding prediction models [13-18] for description of the temporal evolutionary 

dynamics of the air pollutants concentration in atmosphere of the industrial city. 

Acknowledgements 

 The authors would like to thank Prof. Nithaya Chetty, Prof. Marius Potgieter and colleagues for 

invitation to make contributions to CCP-2016 (Gauteng, South Africa). The useful comments of the 

anonymous referees are very much acknowledged too.    
 

References 

[1] Kenneth F 2003 Fractal Geometry: Mathematical Foundations and Applications (Chichester: 

John Wiley & Sons) 

[2] Abarbanel H, Brown R, Sidorowich J and Tsimring L 1993 Rev. Mod. Phys. 65 1331 

[3] Glushkov A V 2008 Modern theory of a chaos (Odessa: OSENU) 

[4] Glushkov A V and Bunyakova Yu Ya 2010 Analysis and prediction of antropogenic effect on 

ait basin of industrial city (Odessa: Ecology) 

[5] Gallager R 1986 Information theory and reliable communication (N.-Y.: Wiley) 

[6] Lanfredi M and Macchiato M 1997 Europhys. Lett. 1997 589 

[7] Koçak K, Şaylan L and Şen O 2000 Atm. Env. 34 1267 

[8] Glushkov A V 2006 Relativistic and correlation effects in spectra of atomic systems (Odessa: 

Astroprint) 

[9] Grassberger P and Procaccia I 1983 Physica D 9 189 

[10] Fraser A M, Swinney H L 1986 Phys. Rev. A. 33(2) 1134 

[11] Kennel M B, Brown R and Abarbanel 1992 Phys. Rev. A 45 3403 

[12] Glushkov A V, Khokhlov V N, Prepelitsa G P and Tsenenko I A 2004 Optics Atm.  and Ocean 

14 219 

[13] Khokhlov V N, Glushkov A V and Tsenenko I A 2004 Nonlinear Proc. Geophys. 11(3) 295 

[14] Khokhlov V N, Glushkov A V, Loboda N S and Bunyakova Y Y 2008 Atm. Env. 42 7284 

[15] Glushkov A V, Khetselius O, Brusentseva S, Zaichko P and Ternovsky V 2014 Advances in 

Neural Networks, Fuzzy Systems and Artificial Intelligence (Recent Advances in Computer 

Engineering vol 21) ed J Balicki (Gdansk: WSEAS Press) pp 69-75 

[16] Glushkov A V, Svinarenko A, Buyadzhi V, Zaichko P and Ternovsky V 2014 Advances in 

Neural Networks, Fuzzy Systems and Artificial Intelligence (Recent Advances in Computer 

Engineering vol 21) ed J Balicki (Gdansk: WSEAS) pp 143-150 

[17] Glushkov A V, Buyadzhi V V and Ponomarenko E L 2014 Proc. of  Int. Geometry Center 7 24  

[18] Glushkov A V, Bunyakova Yu Ya, Fedchuk A P, Serbov N G, Svinarenko A A and  Tsenenko  

I A 2007 Sensor Electr. and Microsyst. Techn. 3 14 

[19] Glushkov A V, Kuzakon V, Ternovsky V B and Buyadzhi V V 2013 Dynamics of laser systems  

with absorbing cell and backward-wave tubes with elements of a chaos (Dynamical Systems 

Theory vol T1) ed J Awrejcewicz, M Kazmierczak, P Olejnik and J Mrozowski (Lodz: 

Wyd. Politechniki Lodzkiej) pp 461-466 

[20] Glushkov A V, Prepelitsa G P, Svinarenko A A and Zaichko P A 2013 Studying interaction 

dynamics of the non-linear vibrational systems within non-linear prediction method: 



 

 

 

 

 

 

Application to quantum autogenerators (Dynamical Systems Theory vol T1) ed J  

Awrejcewicz, M Kazmierczak, P Olejnik and J Mrozowski (Lodz: Wyd. Politechniki 

Lodzkiej) chapter 8 pp 467-477 

[21] Prepelitsa G P, Glushkov A V, Lepikh Ya I, Buyadzhi V V, Ternovsky V B and Zaichko P A 

2014 Sensor Electr. and Microsyst. Techn. 11 43 

[22] Packard N, Crutchfield J, Farmer J and Shaw R 1988 Phys. Rev. Lett. 45 712 

[23] Rusov V D, Glushkov A V, Vaschenko V N, Myhalus O T, Bondartchuk Yu A, Smolyar V P, 

Linnik E P, Mavrodiev S C and Vachev B I 2010 Journ. Atm. and Solar-Terrestrial Phys. 

72 498 

[24] Svinarenko A A 2014 J. Phys.: Conf. Series 548 012039 

[25] Glushkov A V, Khetselius O, Svinarenko A and Prepelitsa G P 2011 Energy Approach to 

Atoms in a Laser Field and Quantum Dynamics with Laser Pulses of Different Shape 

(Coherence and Ultrashort Pulsed Emission vol 1) ed F J Duarte (Rijeka: InTech) chapter 8 

pp 159-186 

[26] Glushkov A V, Khetselius O Yu, Kruglyak Yu A and Ternovsky V B 2015 Calculational 

Methods in Quantum Geometry and Chaos theory P3 (Odessa: ТЕС) 

[27] Glushkov A V, Khetselius O Yu, Svinarenko A A and Buyadzhi V V 2015 Methods of 

computational mathematics and mathematicsl physics P1 (Odessa: TEC) 


