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Abstract. The advanced numerical atomic code based on the combined relativistic energy 

approach and relativistic many-body perturbation theory with the optimized zeroth ab initio 

model potential approximation is presented and used in computing the radiation characteristics 

of the multielectron atoms and multicharged ions. There are presented the results of    

computing the energy levels and oscillator strengths (reduced dipole matrix elements) and 

lifetimes for heavy alkali atom of the caesium, in particular,  there are listed data for the 7s1/2 

– np1/2,3/2 (n=7-10) transitions and some Ne-like multicharged ions. The comparison of the 

calculated values with available theoretical and experimental (compillated) data is performed. 

1.  Introduction 

It is well known that the correct data about different radiation, energetic and spectroscopic 

characteristics of the multielectron atoms and multicharged ions, namely, radiative decay widths, 

probabilities and oscillator strengths of atomic transitions, excitation and ionization cross-sections are 

needed in astrophysics and laboratory, thermonuclear plasma diagnostics and in fusion research. In 

this light, a special interest attracts studying the spectral characteristics of the alkali elements. There 

have been sufficiently many reports of calculations and compilation of energies and oscillator 

strengths for these atoms and corresponding ions (see, for example, [1–28]). In many papers the 

standard Hartree-Fock, Dirac-Fock methods, model potential approach, quantum defect approximation 

etc in the different realizations have been used for calculating energies and oscillator strengths. 

However, it should be stated that for the heavy alkali atoms (such as caesium and francium and 

corresponding ions) and particularly for their high-excited (Rydberg) states, there is not enough 

precise information available in literatures.  

This work goes on our studying the spectroscopic properties of the neutral and highly ionized 

atoms, which has a fundamental importance in many fields of atomic physics (spectroscopy, spectral 

lines theory), astrophysics, plasma physics, laser physics and so on. In this paper the combined 

generalized relativistic energy approach [1-4,11-14] and relativistic many-body perturbation theory 

with the zeroth order ab initio model potential optimized one-particle representation [1,5,13-16] are 

used for computing the energy levels and oscillator strengths (reduced dipole matrix elements) of 

radiative  transitions in some heavy multielectron atoms and multicharged ions, in particular, the alkali 

atoms and ions and the Ne-like multicharged ions. The comparison of the calculated dipole matrix 
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elements with available theoretical and experimental (compillated) data is performed. A generalized 

relativistic energy approach to computing the radiative decay characteristics for atoms and 

multicharged is based on the Gell-Mann and Low adiabatic S- formalism. Originally the energy 

approach to radiative and autoionization processes in multielectron atoms and ions has been developed 

by Ivanova-Ivanov et al [22-27] (the PC code “Superatom-ISAN”). More advanced version of the 

relativistic energy approach has been developed in Refs. [28-32]. Different advanced computational 

generalizations have been considered in Refs. [33-50]. 

2.  The theoretical method   

In the relativistic energy approach (REA) [22-24,30] an imaginary part of the electron energy shift of 

an atom is directly connected with a radiation decay possibility (transition  probability). An approach, 

is based on the Gell-Mann and Low formula with the QED scattering matrix. The total energy shift of 

the state in relativistic atom can be presented in the standard form: 

 

E = ReE + i /2                                                              (1) 

 

where  is interpreted as the level width, and the transition probability P = . An imaginary part of 

electron energy can be defined in the lowest order of the perturbation theory as [22]:  
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where (>n>f)  for electron and (<n<f)  for vacancy. The matrix element is determined as follows: 
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 The separated terms of the sum (3) represent the contributions of different channels; for example, a 

probability of the dipole transition is as follows:  
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 When calculating the matrix elements (8), one should use the angle symmetry of the task and write 

the corresponding expansion for sinr12/r12  on spherical harmonics as follows [1,24]:  
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where J  is the Bessel function of first kind and ()= 2 + 1. This expansion is corresponding to usual 

multipole one for probability of radiative decay. Substitution of the expansion (5) to matrix element of 

interaction gives as follows [24,27]:  



 

 

 

 

 

 

      

         




















1234Im1][

31

312
1

43211234 Q
mm

jj
jjjjV

, 

                                                                    
BrQul

  QQQ ,                                                         (6) 

where ji is the total single electron momentums, mi – the projections; Q
Qul 

is the Coulomb part of 

interaction, Q
Br

 - the Breit part. The imaginary part 
CulQ  contains the radial R and angular  S  

integrals as follows: 
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 The angular coefficient has only a real part: 
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 1 3l l  means that 1, l and 3l  must satisfy the triangle rule and the sum 1 3l l    must be an even 

number. The rest terms in (7) include the small components of the Dirac functions. The tilde 

designates that the large radial component f  must be replaced by the small one g , and instead of 

, 1i i il l l   should be taken for i ij l  and 1i il l   for i ij l . The Breit (magnetic) part can be 

expressed as follows [27]: 
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 The corresponding imaginary part (17) is as follows:  
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The detailed expressions for the Coulomb and Breit parts and the corresponding radial R and angular  

S  integrals can be found in Refs. [22-32].The total probability of a  - pole transition is usually 

represented as a sum of the electric 
EP  and magnetic 

MP  parts. The electric (or magnetic)  - pole 

transition    connects two states with parities which by  ( or  +1) units. In our designations  
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 In our work the relativistic wave functions are determined  by solution of the Dirac equation with 

the potential, which includes the Ivanova-Ivanov “outer electron- ionic core” potential [22] and 

polarization potential [32,38]. The calibration of the single model potential parameter has been 



 

 

 

 

 

 

performed on the basis of the special ab initio procedure [37,38] (see also [1,29,30]). In Refs. [29,30] 

the lowest order multielectron effects, in  particular,  the gauge dependent radiative contribution Im 

Eninv for the certain class of the photon propagator calibration has been  treated. The value of this 

contribution allows to estimate an effectiveness of quantitative accounting for the multielectron 

correlation effects. The minimization of the gauge-non-invariant contribution Im Eninv provides a 

reasonable criterion in the construction of an optimized one-electron representation in the relativistic 

many-body perturbation theory. The minimization procedure leads to the system of the integral-

differential equation that can be solved using one of the standard numerical codes. In result, this 

provides the construction of the optimized one-particle representation and improves an effectiveness 

of the numerical code. As it is known (c.f.[1,27]), an accuracy of computing the transition probabilities 

can be significantly increased by means of adding a multi-electron polarization exchange-correlation 

potential into the transition amplitude. The correct relativistic expression for the polarization operator 

has been presented in Refs. [2,36-40] and used by us in this work. All calculations are performed on 

the basis of the code Superatom-ISAN (version 93). 

3.  Illustration results and conclusions 

Here we present some results of computing the oscillator strengths (reduced dipole matrix elements) 

for a number of transitions in spectra of the heavy alkali atoms and corresponding ions. As the first 

illustration, we present below the data for the caesium. In Table 1 there are listed the theoretical 

reduced dipole matrix elements for a number of transitions, computed within: i) relativistic Hartree-

Fock (RHF) method [6], ii) the empirical relativistic model potential method (ERMP) [7], iii) the 

relativistic single-double (SD) method in which single and double excitations of the Dirac-Hartree-

Fock (DHF) wave function are included to all orders of perturbation theory [8] and iv) our data. Let us 

note that the precise experimental data for the 6p1/2,3/2-6s transition are as follows: 6p1/2-

6s=4.4890(7)and 6p3/2-6s=6.3238(7) [9]. The important feature of the approach used is using the 

optimized one-particle representation and an effective account for the exchange-correlation (including 

the core polarization) effects (see details in Refs. [1,27,38,50]). An estimate of the gauge-non-

invariant contributions (the difference between the oscillator strengths values calculated with using the 

transition operator in the form of “length” G1 and “velocity” G2) is about 0.3%. The REA results, 

obtained with using the different photon propagator gauges (Coulomb, Babushkin, Landau) are 

practically equal.  

 

Table 1. Theoretical reduced dipole matrix elements for a number of transitions of 

Cs (see text)  

Transition i: RHF ii: ERMP iii: SD-DHF iv: Our data 

6p1/2-6s  4.489 4.482  4.535 4.487(G1) 4.488(G2) 

7p1/2-6s 0.282 0.283 0.297  0.279 0.282 

8p1/2-6s  0.088 0.091  0.081 0.086 

6p3/2-6s  6.323 6.382  6.304 6.320 

7p3/2-6s 0.582 0.583 0.601  0.576 0.584 

8p3/2-6s  0.228 0.232  0.218 0.229 

 

 In figure 1 we present experimental (squares) and theoretical (the empirical Coulomb 

approximation data by Feng et al – circles [17]; n<40; our work data – continuous line) lifetimes for 

the Rydberg states nS1/2 in spectrum of Cs.  

 Note that the theoretical results obtained by Feng et al within the empirical Coulomb 

approximation (n <40), and our computing data are in a good agreement with experimental data. 

Resulting in the majority only in recent years (see Ref. [46]) experimental data mainly refer to states 

with n <40. 



 

 

 

 

 

 

 

Figure 1. Experimental (squares) [17] and theoretical  (the empirical Coulomb approximation data by 

Feng et al – circles; n<40; our work data – continuous line) lifetimes for the Rydberg states nS1/2 in 

spectrum of Cs  

 

 Another illustration is computing the transition probabilities in the Ne-like multicharged ions. Let 

us note that the isoelectronic sequence of neon has been especially thoroughly investigated, but 

nevertheless remains of interest because of the spectra of Ne-like ions the source of the most important 

information for the solution of a wide variety of problems in the hot, dense, thermonuclear  plasmas 

spectroscopy, physics of the shortwave lasers etc. The detailed reviews of work on spectroscopy of the 

Ne-like ions are presented in many papers (look, for example, [27,28,51] and Refs. therein). In tables 2 

and 3 we present the values of probabilities of the transitions between levels of the configurations 

2s
2
2p

5
3s,3d,4s,4d and 2s2p

6
3p,4p in the Ne-like ions of the Ni XIX, Br XXVI (in s

-1
; total angle 

moment  J=1): a – the MCDF method; b- relativistic PT with the empirical zeroth approximation  

(RPTMP); c1 – REA-PT data  (without correlation corrections); c2 – REA-PT data (with an account 

for the correlation); exp.- experimental data (look [17-21,27,28] and Refs therein); This work -our 

data.  

Table 2. Probabilities of radiation transitions between levels of the configurations 

2s
2
2p

5
3s,3d,4s,4d and 2s2p

6
3p,4p in the Ne-like ion of  Ni XIX (in s

-1
; total angle moment  

J=1): a – the MCDF method; b- relativistic PT with the empirical zeroth approximation  

(RPTMP);  c1,2 – REA PT data  (without and with account for correlation corrections);  

exp.- experimental data; this work-our data (see text). 

Level J=1 Exp.  а-MCDF b-RPTMP с1-REA PT  с2-REA PT  This work  

2p3/23s1/2 7.6+11 9.5+11 1.3+12 9.7+11 8.1+11 7.9+11 

2p1/23s1/2 6.0+11 1.8+12 1.0+12 7.6+11 6.2+11 6.1+11 

2p3/23d3/2 1.4+11 2.2+11 1.5+11 1.7+11 1.4+11 1.3+11 

2p3/23d5/2 1.2+13 2.1+13 1.2+13 1.5+13 1.2+13 1.1+13 

2p1/23d3/2 3.2+13 4.8+13 3.6+13 4.0+13 3.3+13 3.2+13 

2s1/2 3p1/2   8.5+11 9.5+11 8.1+11 8.0+11 

2s1/2 3p3/2   5.1+12 5.6+12 4.7+12 4.6+12 

2p3/24s1/2 3.3+11  3.6+11 4.1+11 3.4+11 3.3+11 

2p1/24s1/2 2.0+11  3.0+11 3.1+11 2.4+11 2.2+11 

2p3/24d3/2 4.5+10  5.2+10 5.4+10 4.8+10 4.6+10 

2p3/24d5/2 8.3+12  8.3+12 9.2+12 8.2+12 8.1+12 

2p1/24d3/2 8.1+12  7.9+12 8.9+12 8.0+12 8.0+12 

2s1/24p1/2    6.3+11 5.7+11 5.6+11 

2s1/24p3/2    2.7+12 2.4+12 2.3+12 



 

 

 

 

 

 

Table 3. Probabilities of radiation transitions between levels of the configurations 

2s
2
2p

5
3s,3d,4s,4d and 2s2p

6
3p,4p in the Ne-like ion of  Br XXVI (in s

-1
; total angle 

moment  J=1): a – the DF method; b- RPTMP; c1,2 – REA PT data  (without and with 

account for correlation corrections);  exp.- experimental data; this work-our data (see text). 

Level J=1 Exp.  а-MCDF b-RPTMP с1-QED PT  с2-QED PT  This work  

2p3/23s1/2 4.5+12 6.2+12 4.4+12 5.5+12 4.4+12 4.3+12 

2p1/23s1/2 3.1+12 4.8+12 2.8+12 3.6+12 2.7+12 2.6+12 

2p3/23d3/2 2.8+11 3.9+11 2.9+11 3.5+11 2.8+11 2.7+11 

2p3/23d5/2 6.1+13 8.0+13 6.3+13 7.5+13 6.1+13 6.1+13 

2p1/23d3/2 8.6+13 9.5+13 8.7+13 9.9+13 8.6+13 8.5+13 

2s1/2 3p1/2 3.9+12  4.2+12 4.7+12 4.0+12 3.9+12 

2s1/2 3p3/2 1.4+13  1.5+13 1.8+13 1.4+13 1.3+13 

2p3/24s1/2 1.1+12  1.2+12 1.5+12 1.1+12 1.1+12 

2p1/24s1/2 2.1+12  2.5+12 2.8+12 2.3+12 2.2+12 

2p3/24d3/2 2.8+10  7.3+10 6.9+10 6.3+10 6.0+10 

2p3/24d5/2   2.8+13 2.7+13 2.3+13 2.2+13 

2p1/24d3/2 2.0+13  2.2+13 2.3+13 2.0+13 1.9+13 

2s1/24p1/2 2.5+12   2.9+12 2.6+12 2.5+12 

2s1/24p3/2 7.1+12   8.9+12 8.0+12 7.8+12 

Analysis of the data shows that the computational method used provides a physically reasonable 

agreement between the theoretical and experimental data. Let us note that the transition probabilities 

values in the different photon propagator gauges are practically equal. Besides, an account of the inter 

particle (electron) correlation effects is of a great importance.   
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