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Abstract. A general, uniform chaos-geometric computational approach to analysis, modelling 

and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum 

generators system etc) with elements of the deterministic chaos is briefly presented. The 

approach is based on using the advanced generalized techniques such as the wavelet analysis, 

multi-fractal formalism, mutual information approach, correlation integral analysis, false 

nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, 

prediction models etc There are firstly presented the numerical data on the topological and 

dynamical invariants (in particular, the correlation, embedding,  Kaplan-York dimensions, the 

Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the 

semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and 

hyperchaotic regimes.  

1.  Introduction 

In a modern computational quantum and laser physics, electronics and others there are studied various 

systems and devices (such as atomic and molecular systems in an electromagnetic field, multi-element 

semiconductors and gas lasers etc), dynamics of which can exhibit a chaotic behaviour. These systems 

can be considered in the first approximation as a grid of autogenerators (quantum generators), coupled 

by different way [1-10]. It is easily to understand that a quantitative studying of the chaos 

phenomenon features is of a great interest and importance for many scientific and technical 

applications. At the present time it became one of the most actual and important problems of 

computational physics of the complex non-linear systems. 

 In this work we firstly applied a general, uniform chaos-geometric formalism to analysis and 

modelling of non-linear dynamics of the laser systems with elements of a chaos. The formalism is 

based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal 

formalism, mutual information approach, correlation integral analysis, false nearest neighbour 

algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc (see 

details in Refs. [6-19]). There are firstly presented the numerical data on topological and dynamical 

invariants of chaotic systems, in particular, the correlation, embedding,  Kaplan-York dimensions, the 

Lyapunov’s exponents, Kolmogorov’s entropy etc for laser (the semiconductor GaAs/GaAlAs laser 

with retarded feedback) systems dynamics in chaotic and hyperchaotic regimes.     
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2.  Chaos–geometric approach to modelling chaotic dynamics of the laser systems: General 

formalism 

The important step of the quantitative studying chaotic dynamics of different dynamical systems is an 

numerical analysis of the characteristic time series, i.e. the time series of the key dynamical 

characteristics.  Let us formally consider scalar measurements s(n) = s(t0 + nt) = s(n), where t0 is the 

start time, t is the time step, and is n the number of the measurements. In a general case, s(n) is any 

time series, particularly the amplitude level. Since processes resulting in the chaotic behaviour are 

fundamentally multivariate (look [18-23]), it is necessary to reconstruct phase space using as well as 

possible information contained in the s(n). Such a reconstruction results in a certain set of d-

dimensional vectors y(n) replacing the scalar measurements. Packard et al. [21] introduced the method 

of using time-delay coordinates to reconstruct the phase space of an observed dynamical system. The 

direct use of the lagged variables s(n + ), where  is some integer to be determined, results in a 

coordinate system in which the structure of orbits in phase space can be captured. Then using a 

collection of time lags to create a vector in d dimensions, 

 

                                              y(n) = [s(n), s(n + ), s(n + 2), …, s(n + (d1))],                    (1) 

 

the required coordinates are provided. In a nonlinear system, the s(n + j) are some unknown nonlinear 

combination of the actual physical variables that comprise the source of the measurements. The 

dimension d is called the embedding dimension, dE.  

 According to Mañé and Takens [22,23],  any time lag will be acceptable is not terribly useful for 

extracting physics from data. If  is chosen too small, then the coordinates s(n + j) and s(n + (j + 1)) 

are so close to each other in numerical value that they cannot be distinguished from each other. 

Similarly, if  is too large, then s(n + j) and s(n + (j + 1)) are completely independent of each other 

in a statistical sense. Also, if  is too small or too large, then the correlation dimension of attractor can 

be under- or overestimated respectively. It is therefore necessary to choose some intermediate (and 

more appropriate) position between above cases. First approach is based on computing the linear 

autocorrelation function. Another approach is based on using the average mutual information.  

 The next principal step is to determine an  embedding dimension determination and to reconstruct a 

Euclidean space R
d
 large enough so that the set of points dA can be unfolded without ambiguity. In 

accordance with the embedding theorem, the embedding dimension, dE, must be greater, or at least 

equal, than a dimension of attractor, dA, i.e. dE > dA. In other words, we can choose a fortiori large 

dimension dE, e.g. 10 or 15, since the previous analysis provides us prospects that the dynamics of our 

system is probably chaotic. However, two problems arise with working in dimensions larger than 

really required by the data and time-delay embedding [24]. Firstly, many of computations for 

extracting interesting properties from the data require search and other operations in R
d
 whose 

computational cost rises exponentially with d. Secondly, but more significant from the physical 

viewpoint, in the presence of noise or other high dimensional contamination of the observations, the 

extra dimensions are not populated by dynamics, already captured by a smaller dimension, but entirely 

by the contaminating signal. In too large an embedding space one is unnecessarily spending time 

working around aspects of a bad representation of the observations which are solely filled with noise. 

Further it is necessary to determine the dimension dA. There are a few standard approaches to 

reconstruct an attractor dimension (see, e.g., [1-8]), but usually there are applied only two methods. 

The first correlation integral analysis uses the correlation integral, C(r), to distinguish between chaotic 

and stochastic systems. To compute the correlation integral, the algorithm of Grassberger and 

Procaccia [25] is the most commonly used approach, where the correlation integral is  
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where H is the Heaviside step function with H(u) = 1 for u > 0 and H(u) = 0 for u  0, r is the radius of 

sphere centered on yi or yj, and N is the number of data measurements. If the time series is 

characterized by an attractor, then the integral C(r) is related to the radius r given by 
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where d is correlation exponent that can be determined as the slop of line in the coordinates log C(r) 

versus log r by a least-squares fit of a straight line over a certain range of r, called the scaling region.  

 If the correlation exponent attains saturation with an increase in the embedding dimension, then the 

system exhibits a chaotic dynamics. The saturation value of the correlation exponent is defined as the 

correlation dimension (d2) of an attractor. The nearest integer above the saturation value provides the 

minimum or optimal embedding dimension for reconstructing the phase-space or the number of 

variables necessary to model the dynamics of the system.  

 To verify the results obtained by the correlation integral analysis, one can use surrogate data 

method. This method (look [6,7,26-29]) is an approach that makes use of the substitute data generated 

in accordance to the probabilistic structure underlying the original data. This means that the surrogate 

data possess some of the properties, such as the mean, the standard deviation, the cumulative 

distribution function, the power spectrum, etc., but are otherwise postulated as random, generated 

according to a specific null hypothesis. Here, the null hypothesis consists of a candidate linear process, 

and the goal is to reject the hypothesis that the original data have come from a linear stochastic 

process. Often, a significant difference in the estimates of the correlation exponents, between the 

original and surrogate data sets, can be observed. In the case of the original data, a saturation of the 

correlation exponent is observed after a certain embedding dimension value (i.e., 7), whereas the 

correlation exponents computed for the surrogate data sets continue increasing with the increasing 

embedding dimension. The high significance values of the statistic indicate that the null hypothesis 

(the data arise from a linear stochastic process) can be rejected and hence the original data might have 

come from a nonlinear process.  

 The next important step is computing the Lyapunov’s exponents, which are the dynamical 

invariants of a nonlinear system. In a general case, the orbits of chaotic attractors are unpredictable, 

but there is the limited predictability of chaotic physical system, which is defined by the global and 

local Lyapunov’s exponents. In a chaos theory, the spectrum of the Lyapunov’s exponents is 

considered a measure of the effect of perturbing the initial conditions of a dynamical system. Note that 

both positive and negative Lyapunov’s exponents can coexist in a dissipative system, which is then 

chaotic. In fact, if one manages to derive the whole spectrum of the Lyapunov’s exponents, other 

invariants of the system, i.e. Kolmogorov entropy and attractor's dimension can be found. The 

Kolmogorov entropy, K, measures the average rate at which information about the state is lost with 

time. An estimate of this measure is the sum of the positive Lyapunov’s exponents. The inverse of the 

Kolmogorov entropy is equal to the average predictability. The estimate of the dimension of the 

attractor is provided by the Kaplan and Yorke conjecture: 
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order. There are a few approaches to computing the Lyapunov’s exponents. One of them is based on 

the Jacobi matrix of system [30]. In the case where only observations are given and the system 

function is unknown, the matrix has to be estimated from the data. In this case, all the suggested 



 

 

 

 

 

 

methods approximate the matrix by fitting a local map to a sufficient number of nearby points. In our 

work we use the method with the linear fitted map proposed by Sano and Sawada [30], although the 

maps with higher order polynomials can be also used. To calculate the spectrum of the Lyapunov’s 

exponents from the amplitude level data, one could determine the time delay  and embed the data in 

the four-dimensional space. In this point it is very important to determine the Kaplan-York dimension 

and compare it with the correlation dimension, determined by the Grassberger-Procaccia algorithm.  

The estimations of the Kolmogorov entropy and average predictability can further show a limit, up to 

which the amplitude level data can be on average predicted. Surely, the important moment is a check 

of the statistical significance of results.  It is worth to remind that results of state-space reconstruction 

are highly sensitive to the length of data set (i.e. it must be sufficiently large) as well as to the time lag 

and embedding dimension determined. Indeed, there are limitations on the applicability of chaos 

theory for observed (finite) time series arising from the basic assumptions that the time series must be 

infinite [31]. A finite and small data set may probably results in an underestimation of the actual 

dimension of the dynamical process. The statistical convergence tests together with surrogate data 

algorithm can provide the satisfactory significance of the investigated data regarding the state-space 

reconstruction. In Table 1 we present the main blocks of our universal chaos-geometric approach to 

computational studying a non-linear dynamics of the chaotic systems [6-19].  

 

Table 1. A chaos-geometric approach to nonlinear analysis and prediction of  

chaotic dynamics of the complex systems 

I. Preliminary study and assessment of the presence of chaos: 

1. Test by Hottvod-Melben:  K → 1 – chaos; 

2. Fourier decompositions, irregular nature of change – chaos; 

3. Spectral analysis, Energy spectra statistics, the Wigner 

distribution, the spectrum of power, "Spectral rigidity"; 

 

II. The geometry of the phase space. Fractal Geometry: 

4. Computation time delay τ using autocorrelation function or 

mutual information; 

5. Determining embedding dimension dE by the method of correlation 

dimension or algorithm of false nearest neighbouring points; 

6. Calculation multi-fractal spectra. Wavelet analysis; 

 

III. Prediction: 

7. Computing global Lyapynov dimensions LE:  ; Kaplan-York 

dimension dL, KE,  

average predictability measure Prmax; 

8. Determining the number of nearest neighbour points NN for the best 

prediction results; 

9. Methods of nonlinear prediction. Neural network algorithm, the 

algorithm optimized trajectories, ...; 

3.  Results and conclusions 

As illustration, below we present the results of computational studying the low- and high dimensional 

dynamics of a chaos generation in the semiconductor GaAs/GaAlAs laser with the retarded feedback. 

Fischer et al [32] have carried out the excellent experimental studying dynamics of a chaos generation 

in the semiconductor GaAs / GaAlAs Hitachi HLP1400 laser; an instability is generated by means of 

the retarded feedback during changing the control parameter such as the feedback strength  (or in fact 

an injection current). Of course, depending on the system  there is appeared a multi-stability of 

different states with the modulation period: Tn=2/(2n+1), n=0, 1,2,…  The state of n = 0 is called as a 



 

 

 

 

 

 

ground one. With respect to the frequency modulation, other states are called as the third harmonic, 

fifth harmonic and so on. In the figure 1 we list the measured data on the time-dependent intensities 

for a semiconductor laser device with feedback: a) the time series, which illustrates a chaotic 

wandering between the ground state and the state of the third harmonic; b) the time series for a system 

in a state of the global chaotic attractor.  

In Table 2 we present our original data on the correlation dimension d2, the embedding dimension, 

computed on the basis of the false nearest neighboring points algorithm (dN) with percentage of false  

neighbors (%) which are calculated for different lag times . The data are presented for two interesting 

regimes: I. chaos and II. hyperchaos. In Table 3 our computational data on the Lyapunov’s exponents, 

Kaplan-York attractor dimensions, the Kolmogorov entropy  Kentr are listed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The time series of intensity in the  GaAs/GaAlAs Hitachi HLP1400 laser 

(the measured data, from Ref. [32]). 

 

Table 2. The correlation dimension d2, the embedding dimension, computed on 

the basis of the false nearest neighboring points algorithm (dN) with percentage 

of false neighbors (%) which are calculated for different lag times  

Chaos regime (I) Hyperchaos regime (II) 

 d2 (dN)  d2 (dN) 

58 3.4 5 (8.1) 67 8.4 11 (15) 

6 2.2 4 (1.05) 10 7.4 8 (3.4) 

8 2.2 4 (1.05) 12 7.4 8 (3.4) 

 

Table 3. The Lyapunov’s exponents: 14, the Kaplan-York attractor 

dimension dL and the Kolmogorov entropy  Kentr 

Regime 1 2 3 dL Kentr 

Chaos (I) 0.151 0.00001 -0.188 1.8 0.15 

Hyperchaos (II) 0.517 0.192 -0.139 7.1 0.71 

 

One can see that there are the Lyapunov’s exponents positive and negative values. The resulting 

Kaplan-York dimensions in both cases are very similar to the correlation dimension, which is 



 

 

 

 

 

 

computed using the Grassberger-Procaccia algorithm [25]. The Kaplan-York dimension is less than 

the embedding dimension that confirms the correct choice of the latter. A scenario of chaos generation 

is in converting initially periodic states into individual chaotic states with increasing the parameter  

through a sequence of the period doubling bifurcations. Further there is appeared a global chaotic 

attractor after merging an individual chaotic attractors according to a few complicated scenario (see 

details in Refs. [13,32,33]). 

 To conclude, in this paper we have presented the results of computing nonlinear chaotic dynamics 

characteristics for the semiconductor GaAs/GaAlAs laser with retarded feedback system. The 

corresponding data have been obtained on the basis of using the advanced non-linear-analysis 

techniques such as a wavelet analysis, multi-fractal formalism, mutual information approach, 

correlation integral analysis and other methods. The correlation dimension method provided a low (or 

high-) fractal-dimensional attractor thus suggesting a possibility of an existence of the chaotic 

behaviour. The method of surrogate data, for detecting nonlinearity, provided significant differences in 

the correlation exponents between the original data series and the surrogate data sets. This finding 

indicates that the null hypothesis (linear stochastic process) can be rejected. It has been finally 

confirmed that the studied laser system dynamics exhibit a nonlinear behaviour with elements of the 

low-and high-dimensional chaos.  
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