
Device Simulation using Symmetric Smoothed

Particle Hydrodynamics

K. Kitayama1, M. Toogoshi2, and Y. Zempo2

1Simulatio Corporation, Yokohama 222-0033 Japan
2Computer and Information Sciences, Hosei University, Tokyo 184-8584 Japan

E-mail: zempo@hosei.ac.jp

Abstract. We have applied symmetric smoothed particle hydrodynamics (SSPH) to electronic
structure calculations for high electron mobility transistors (HEMTs). In layered structures
such as field effect transistors (FETs), and especially HEMTs, the current density is mainly
dependent on the electron mobility and the electronic field near the gate, where both can be
taken to be constant. The relation between the channel current and the applied gate voltage can
be obtained by a one-dimensional calculation. Then, it is easy to apply SSPH to evaluate the
simple quantum properties of a device. We mainly focus on the I-V characteristics, which are
typical device features. The electronic structure of a HEMT was calculated using both SSPH
and finite-difference (FD) methods. The results from SSPH calculations are in good agreement
with those from the FD method, and the accuracy of SSPH is similar to that of FD. In a
simple example, where three particles are employed in the SSPH domain, we show there is an
equivalence to the three-point method in FD.

1. Introduction
Smoothed Particle Hydrodynamics (SPH) is a typical mesh-free particle method, in which
the system is represented by a finite set of arbitrarily distributed particles without using any
mesh. SPH is widely applied to hydrodynamic problems that deal with complex shapes, large
deformations and free surfaces. Recently, SPH-based methods have been applied to solve non-
hydrodynamic partial differential equations such as the wave equation, the diffusion equation,
Maxwell’s equations and Poisson’s equation [1, 2, 3, 4]. However, there are few studies for
electronic structure calculations [5, 6].

An SPH-based method may lead to an efficient real-space technique because of arbitrarily
distributed computation points. However, it is generally known that the standard SPH method
has low accuracy [7]. In considering applications of mesh-free particle methods to practical
electronic structure calculations, obtaining comparable accuracy to the results of finite-difference
(FD) methods is one of the problems. Symmetric Smoothed Particle Hydrodynamics (SSPH)
[8, 9] have been proposed as one of the improved techniques. This method successfully increases
the accuracy of standard SPH by using a Taylor-series expansion.

We applied SSPH to a practical electronic device calculation for a high-electron-mobility
transistor (HEMT). As field-effect transistors (FETs) incorporating heterojunctions, HEMTs
have attracted attention due to features such as high gain, high switching speeds and extremely
low noise values. These features are suitable for applications in industry such as high-frequency
devices and low noise amplifiers [10]. In such a device, a very high current can be provided by



the accumulated electrons, which can be considered as a two-dimensional electron gas (2DEG)
[11]. For such a case, calculations of the electronic structure can be expressed using one-
dimensional equations. This provides quite a nice example to use in checking the accuracy
of SSPH calculations. Non-uniform distributions of computational points can be treated in the
frame-work of SSPH, which we expect to reduce computational costs significantly. However, the
SSPH calculation described in this paper was performed for a uniform particle distribution for
simplicity.

The purpose of this paper is to evaluate SSPH for the simple quantum device of a HEMT. We
mainly focus on the I-V characteristics, which is one of the typical device features. The paper is
organized as follows. First, the HEMT structure we adopted is explained, and the formulation
of SSPH follows in the next section. The numerical results are shown in Sec. 3. Finally, we
summarize the conclusions in the last section.

2. Method
A typical, single-heterojunction HEMT is shown in Fig. 1. Usually such a device is fabricated as
an epitaxial multi-layer structure. Using the band offset at the heterojunction, electronic devices
such as FETs, and especially HEMTs, work quite efficiently. Such devices have been intensively
studied both experimentally and theoretically [11, 12]. The electronic charge distribution in this
system can be considered as a quasi-2D system. The electric current from the source to the
drain is controlled by changing the voltage applied to the gate, which changes the electrostatic
potentials around the gate. The current density of the heterostructure FET is determined by
the ionized impurities, the gate electric field, and the density and the electron mobility. The
electric field is approximately constant in the narrow region beneath the gate. Also, the electron
mobility can be taken as constant in the long gate device. Then the current is proportional
to the electron density. Thus, in a one-dimensional analysis, in a direction perpendicular to
the surface that corresponds to the gate, it is possible to determine the device characteristics,
e.g., the relation between the channel current and the applied gate voltage for a practical FET
device [10]. The channel is narrow enough to be expressed in terms of quantized states, which
are simply described in a one-dimensional (1D) equation.

Figure 1. The structure of a HEMT. (a) The schematic device model, and (b) the layer
structure we adopted in the calculation.

In our general analysis of the characteristic behavior of the device, we solved the effective
one-dimensional, one-electron Schrödinger equation and Poisson’s equation [15]. In the vertical
direction beneath the gate, these equations can be written in 1D as follows;
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where Ei is the i-th energy eigenvalue, and ψi(z) is the corresponding wave function. The
position-dependent effective mass and permittivity are expressed asm∗(z), and ε(z), respectively.
The effective potential V (z) can be obtained from Poisson’s equation. The electrostatic potential
VH can be expressed by VH = −eϕ+∆v, where ∆v is the band offset of the two heterojunction
interfaces in the HEMT structure. The potential profile ϕ is determined by the ionized charge
ρI .
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]
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and the carrier concentration ρq(z), which exists mainly in the channel region, is given by
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Here gi is the degeneracy of the state, EF is the Fermi level, T is the temperature, and k is
Boltzmann’s constant. The electrostatic potential distribution is obtained from a self-consistent
solution of the Schrödinger and Poisson equations. Usually, Eqs. (1) and (2) are expressed
in finite-difference (FD) form, and are solved subject to appropriate boundary conditions. In
addition, matching conditions at the heterojunction interfaces are required for the derivatives
of wave functions and electrostatic potentials. The solution can be obtained by solving each
equation step-by-step until convergence is achieved [13, 14, 15, 16]. The electronic charge density
determines the potential V , which can also include the exchange-correlation potential.

In SPH, on the other hand, the wave function is approximated using an integral form, and the
system is represented by a finite number of particles. The concept of the integral representation
of a wave function ψ(r) starts from the following identity. The delta function is replaced by a
kernel function W (r, h).

ψ(z) =

∫
Ω
ψ(z′) δ(z − z′) dz′ ≃

∫
Ω
ψ(z′) W (z − z′, h) dz′, (5)

where h is the smoothing length that defines the domain Ω. We adopt the Wendland function as
the kernel function in the one-dimensional system we consider [17]. It is finite and is convenient
for numerical calculations:
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where r = |z − z′|.
SSPH corrects the approximation of SPH using a Taylor-series expansion of ψ(r). The right-

hand side of Eq. (5) can then be rewritten as follows:

∫
Ω
(z − zi)

kψ(z)W (z − zi, h) dz ≃
m∑
l=0

(∫
Ω
(z − zi)

k+lW (z − zi, h)dz

)(
1

l!

∂lψ

∂zl

) ∣∣∣∣∣
zi

, (7)



where k = 0, 1, . . . ,m. The integral equation is thus approximated by the summation over the
particles in the domain Ω corresponding to the smoothing length h. In this version of SSPH,
there is no derivative of the kernel function, which sometimes causes errors in SPH calculations.
The accuracy of SSPH mainly depends on the order of the Taylor-series expansion [5]. Equation
(7) has the form of simultaneous linear equation, P = KD, as given below:
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)
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where Wij = W (zj − zi, h). Naturally, the Schrödinger equation in Eq. (1) is a generalized
eigenvalue problem. The small volumes occupied by the j-th particles surrounding particle i are
defined as ∆Vj , which is calculated the number density n(zj):

∆Vj = 1/n(zj), n(zj) =

m∑
k

δ(zj − zk) ≃
m∑
k

W (zj − zk;h). (9)

Defining D0 = ψ
∣∣
zi

, D1 = ∂ψ
∂z

∣∣
zi
, and D2 = 1

2
∂2ψ
∂z2

∣∣
zi
, we can write the Schrödinger and

Poisson equations Eqs. (1) and (2) at the position of the i-th particle in the form of the SSPH
discretization. For example, in the simplest case of a constant effective mass, the Schrödinger
equation, Eq. (1), for the i-th particle in SSPH can be written as(

V (zi) 0 − h̄2

m∗ . . . 0

)
D = (E 0 0 . . . 0)D. (10)

Poisson’s equation in Eq. (2), with constant permittivity, also can be simply described in a
manner similar to the derivation of Eq. (10). From the electronic charge density, the electrostatic
potential and the exchange-correlation potentials are also determined. In SSPH, the particle
position can be arbitrarily distributed so as to obtain a specified level of accuracy. This is a
particular feature of this method, which we expect to reduce the computational cost significantly.
However, we have to calculate K−1 in each particle position, keeping the matrix K regular.

3. Results and discussion
We have calculated device characteristics both in SSPH and FD, and have compared the results.
In the SSPH calculation, we adopted the smoothing length h = 0.2 Å and assumed constant
particle distributions over the distance ∆x = 0.2 Å. For the FD mesh size, we used the same
value ∆x = 0.2 Å as for the particle distribution in SSPH. Figure 2 shows that band structure
and the charge profile of the results from both the SSPH and FD calculations, plotted in the
vertical direction. Both results from SSPH are in good agreement with those from the FD
calculation.

As mentioned above, the current is determined by the carrier density. The sheet carrier
density Ns and dNs/dVg are plotted in Fig. 3 as functions of the gate voltage Vg. These provide
the I-V characteristics and the transconductance gm, respectively. Changing the applied gate
voltage corresponds to calculating the characteristics using different boundary conditions at the
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Figure 2. Conduction band structure and
charge profile, calculated using SSPH (dashed
line) and FD (solid line).
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Figure 3. Characteristic properties and
sheet carrier density Ns and dNs/dVg,
calculated using SSPH (dashed line) and FD
(solid line).

surface z = 0. We have calculated the charge profile for different gate voltages in the steps of
∆Vg = 0.005. The sheet carrier density Ns integrated over the whole region and is plotted in
Fig. 3. At each point, we also calculate dNs/dVg using ∆Vg in a difference scheme; this is also
plotted in Fig. 3. We can see that the results of SSPH are in good agreement with those of FD.
The accuracy is sufficient for practical device simulations. In the SSPH calculation, we have also
tried the different smoothing length h = 0.3 Å, which includes five particles in the calculation
domain, rather than three. The results were the same as for the calculation performed with the
smoothing length h = 0.2 Å. Within this difference, the accuracy of SSPH does not change.

There is a significant difference in the form of the SSPH and FD equations. The former
is based on integral equations, and the latter on differential equations. However, there is an
equivalence in the simplest case, in which SSPH uses three particles in the computational domain,
and FD uses a three-point method. The reason is that, from the discretization point of view,
there is no difference between SSPH and FD in this case. Let us consider a typical case, as

   

 

 

 
  

Figure 4. Example of the kernel functionW in the case of a
constant distribution ∆ of three particles over the smoothing
length. The values at each point are W (zi) = eH , and
W (zi−1) =W (zi+1) = e, respectively.

shown in Fig. 4. Three particles are distributed over a constant spacing ∆ in the computational
domain defined by the smoothing length h. In this case, the matrix size of K reduces to 3× 3.
The inverse matrix K−1 can be calculated manually, and the equation D = K−1P can then be
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eψi−1 + eHψi + eψi+1

e∆(−ψi−1 + ψi+1)

e∆2 (ψi−1 + ψi+1)

 . (11)

We can immediately see the equivalence by substituting each element – that is, D0 = ψi,
D1 = (−ψi−1 +ψi+1)/(2∆), and D2 = (ψi−1 − 2ψi+ψi+1)/(2∆

2) – into Eq. (10). The practical
formula obtained from three-point FD can thus be reproduced through the SSPH procedure.

4. Summary
We introduced SSPH as a discretization technique for device simulations. SSPH was applied to
an electronic structure calculations for a HEMT. In comparing the characteristics of HEMTs
calculated using SSPH and FD, we find that the results from SSPH are in good agreement with
those obtained using FD. The accuracy of SSPH is similar to that of FD. From the technical point
of view, the computational effort increases as the order of the Taylor-series expansion becomes
higher. However, SSPH and FD were also shown to be equivalent in a simple case corresponding
to the three particles in the SSPH computational domain and to a three-point FD method. If
the number of SSPH particles is large enough to describe steep changes in the one-dimensional
Schrödinger equation, reasonable accuracy can be obtained. Our results indicate that SSPH can
be applied to other electronic-structure calculations that require high accuracy.
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