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Abstract. We use a computationally efficient graph-cut (GC) method to obtain exact
ground-states of the d = 3 random field Ising model (RFIM) on simple cubic (SC), body-
centered cubic (BCC) and face-centered cubic (FCC) lattices with Gaussian, Uniform and
Bimodal distributions for the disorder ∆. At small-r, the correlation function C(r,∆) shows a
cusp singularity characterised by a non-integer roughness exponent α signifying rough fractal
interfaces with dimension df = d − α. In the paramagnetic phase (∆ > ∆c), α ' 0.5 for
all lattice and disorder types. In the ferromagnetic phase (∆ < ∆c), α ' 0.66 with minor
variations for the different lattice types. Our predictions are confirmed by scattering data from
diluted antiferromagnets (DAFFs). Fractal interfaces have important implications on growth
and relaxation.

1. Introduction
The random field Ising model (RFIM) is one of the simplest models that provides a framework
to study the effects of quenched disorder and randomness on static and dynamic properties.
It is realized by many physical systems such as dilute antiferromagnets in a field (DAFFs) [1],
diluted dipolar magnet LiHoxY1−xF4 [2], relaxor ferroelectrics [3], colloid-polymer mixtures [4],
non-equilibrium phenomena like Barkhausen noise in magnetic hysteresis [5], etc. The RFIM
comprises of N Ising spins on a d-dimensional lattice with the Hamiltonian given by [6]:

H({σi}) = −J
∑
〈ij〉

σiσj −
∑
i

hiσi, σi = ±1 (1)

Here, J > 0 is the strength of the nearest neighbour coupling and promotes ferromagnetic order
and hi’s are the disordering random fields usually drawn from one of the following distributions:

Gaussian : P1(hi) =
1

2π∆2
e−h

2
i /(2∆2), (2)

Uniform : P2(hi) =

{ [√
12∆

]−1
: |hi| ≤

√
3∆,

0 : |hi| >
√

3∆,
(3)

Bimodal : P3(hi) =
1

2
[δ(hi −∆) + δ(hi + ∆)] . (4)



The standard deviation ∆ is a measure of the strength of disorder. All the three distributions
have mean zero and variance ∆2. As the disorder strength is increased, the system undergoes a
transition from the ferro to para phase at a critical disorder strength ∆c.

The presence of competing interactions gives rise to a complex free energy landscape having
several local minima separated by energy barriers that grow exponentially with N . The evolving
system therefore gets trapped in a local minimum which can be arbitrarily far from the global
minimum. As a result there is a multitude of time-scales which lead to slow growth and
anomalous relaxation. Such energy functions are very difficult to minimize. Traditional Monte
Carlo (MC) procedures such as the Metropolis algorithm or parallel tempering involve only
O(1) spin flips at a time and are unable to approach the ground state (GS). In recent years,
several sophisticated techniques based on max-flow/min-cut or graph-cut (GC) methods have
been employed to study the RFIM [7]. These methods attempt to find a local minimum by a
simultaneous re-labeling of a large number of spin variables. An exponentially large portion of
the phase-space can be sampled in one move, thereby facilitating a quick search for the global
minimum. Further, the RFIM Hamiltonian satisfies a regularity condition which guarantees the
GS via the GC.

The random fields cause pinning and roughening of interfaces. They are then characterized
by a roughness exponent α which is related to the fractal dimension df = d − α. When is
the interfacial texture consequential? Consider a thermal quench from a high temperature
paramagnetic phase to a low temperature ferromagnetic phase. The evolution of the system is via
the motion of interfaces due to surface tension, but is impeded by the presence of energy barriers
due to the disordering fields. The domain growth therefore is due to thermally activated barrier
hopping. According to Villain [8], the barrier energy in the RFIM is EB ∼ Rm where R is the
characteristic length scale in the system and the barrier exponent m = 2−α. Consequently, this
class of disordered systems exhibits slow logarithmic growth [9]. On a related note, de-pinning
of interfaces on application of an external field has generated technological interest [10, 11].
The creep motion that preceeds the de-pinning transition is greatly affected by the interfacial
roughness.

In this paper, we obtain GS morphologies (T = 0) of the RFIM on: (i) simple cubic (SC),
body-centered cubic (BCC) and face-centered cubic (FCC) lattices with Gaussian disorder
and (ii) SC lattice with Gaussian (G), Uniform (U) and Bimodal (B) distributions, by a
computationally efficient GC protocol introduced by Boykov and Kolmogorov (BK) [12]. It’s
polynomial time complexity of O(N) enabled us to access ground states of substantially larger
system sizes than in previous studies which used procedures with complexity of O(N3) and
more. We analyze the textures of GS morphologies using the correlation function C(r,∆) and
the structure factor S(k,∆). The main results of our paper are as follows:
(a) The GS morphologies comprise of correlated domains of “up” spins and “down” spins
separated by rough interfaces. These correlated regions grow in size as the disorder strength
∆→ ∆+

c .
(b) By evaluating the Binder cummulant, our estimates of the critical disorder ∆c are (a)
2.278± 0.002 (SC, G), (b) 3.316± 0.002 (BCC, G), (c) 5.16± 0.002 (FCC, G), (d) 2.234± 0.002
(SC, U) and (e) 2.20± 0.002 (SC, B).
(c) At small-r, the correlation function C(r,∆) shows a cusp singularity with distinct roughness
exponents α for the ferromagnetic phase (∆ < ∆c) and paramagnetic phase (∆ > ∆c). The
structure factor S(k,∆) correspondingly shows a non-Porod tail signifying scattering off fractal
interfaces.
(d) In the paramagnetic phase (∆ > ∆c), the roughness exponent α = 0.5 ± 0.01 for all three
lattice types and disorder distributions, showing that the interfacial properties are universal.
(e) In the ferromagnetic phase (∆ < ∆c), the roughness exponent α ' 0.66 with minor variations
for the different lattice types. Though tiny, these variations have important implications.



(f) We explain the non-Porod behavior of the structure factor obtained in small-angle neutron-
scattering experiments on dilute antiferromagnets.

This paper is organized as follows. In Sec. 2 we present the GC procedure used to obtain
the ground states and the tools for characterizing these morphologies. In Sec. 3, we analyze the
RFIM morphologies obtained for the SC, BCC and FCC lattices. We also verify our predictions
of fractal interfaces in a large number of dilute antiferromagnets by studying the small-angle
neutron scattering data. Finally, we conclude this paper with a summary and discussion in
Sec. 4.

2. Methodology
2.1. Graph Cuts for Energy minimization
In the GC method, the spin lattice is represented as a graph G with vertices V and edges E
connecting them. Each vertex i is assigned a label si ∈ L. The energy function associated with
such a labelling is given as

E({si}) =
∑
{ij}∈N

Vij(si, sj) +
∑
i

Di(si). (5)

Here, Vij is the weight of edge ij and represents the penalty of assigning labels si and sj to vertices
i and j respectively, and Di is the cost of assigning the label si to vertex i. For simplicity, we
only discuss the case of binary labels, i.e., L = {0, 1}. A partitioning of the vertices V into two
sets S and T , then corresponds to labelling the vertices and is called a cut C. Any edge ij ∈ E
with i ∈ S and j ∈ T (or vice versa) is a cut edge. The cost of the cut is the sum of the weights
of the cut edges. The problem is then to find the cut with the smallest cost or min-cut.

The RFIM Hamiltonian belongs to a special class of energy functions which satisfies a
regularity condition [13]. The latter assures convergence to exact ground states if energy
minimization is via graph-cuts. In recent papers [14, 15], we have described in detail our
application of the Boykov-Kolmogorov GC method (BK-GCM) [12] to the RFIM. For the sake
of brevity, we will not reiterate the algorithmic details here. The O(N) polynomial complexity
of the BK-GCM method allowed us to perform simulations on large systems and obtain smooth
data.

2.2. Characterization of Interfacial Texture
Surface roughness has usually been described using the solid-on-solid model [16, 17]. In this
model, the surface is described by a single-valued function h(~r) which represents the height of
the surface at a position vector ~r on a (d− 1)-dimensional substrate. The interface width is the
r.m.s. fluctuation in the height:

w2 =
1

A

∫
d~r
[
h(~r)− h̄

]2
=

1

A

∫
d~r δh(~r)2, (6)

where A is the substrate area and h̄ is the average height. For a translationally invariant system,
we can also write

w2 =
〈
h(~r)2

〉
− 〈h(~r)〉2 , (7)

where the angular brackets denote an ensemble average: 〈h(~r)〉 = h̄. We expect w2 ∼ L2α,
where α is the roughness exponent of the interface [16]. For a self-affine surface, α = d − df ,
where df is the fractal dimension of the surface.

A more detailed tool for quantifying domain morphologies is the correlation function:

C(~r,∆) = 〈σiσj〉 − 〈σi〉〈σj〉, (8)



where ~r = ~rj − ~ri and the angular brackets denote an ensemble average. In the isotropic case,
C(~r,∆) depends only on the vector magnitude r = |~r|. The correlation length ξ is usually
defined as the distance over which C(r,∆) decays to (say) 0.2 × maximum value. The typical
GS morphology of the RFIM comprises of compact domains of “up” (σi = +1) and “down”
(σi = −1) spins of size ∼ ξ separated by rough interfaces. For such a morphology, the small-r
behaviour of the correlation function exhibits a cusp regime [18]:

C̄ (r) ≡ 1− C (r) ' A (r/ξ)α , (9)

where α is the cusp or roughness exponent. For rough fractal interfaces 0 ≤ α < 1 and the
corresponding fractal dimension is df = d− α. For smooth interfaces, α = 1 and is termed the
Porod law [19].

Scattering experiments measure the structure factor, which is the Fourier transform of the
correlation function:

S(~k,∆) =

∫
d~r ei

~k.~r C(~r,∆), (10)

where ~k is the wave-vector of the scattered beam. In the isotropic case S(~k,∆) depends only on

the vector magnitude k = |~k|. The short-distance cusp singularity has important implications
for the structure factor S(k). It decays with an asymptotic power-law form [20, 21, 22]

S(k) ∼ Ã (ξk)−(d+α) . (11)

The dominant large-k behaviour in Eq. (11) is the Non-Porod regime S(k) ∼ (ξk)−(d+α) implying

scattering off rough fractal interfaces. In the case of smooth interfaces, S(k) ∼ (ξk)−(d+1)

yielding the well known Porod law. We emphasize that the correlation-function data yields a
more accurate measure of α, as it is obtained by averaging over all domains and interfaces in
the system.

3. Numerical Results
The ground states of the RFIM were obtained using the BK-GCM on lattices of size L3

(L = 128). Unless specified otherwise, we employ periodic boundary conditions in all directions.
The BK-GCM yields states with 99% overlap with the GS in the first iteration itself, and we
observe a mild critical slowing down as ∆ → ∆c. All the results have been averaged over 100
realizations of {hi} for a given value of ∆. For the BCC and FCC lattices, we introduce extra
sites with σi = 0, converting them to SC lattices with spacing a/2. With this procedure, we
could use the standard fast Fourier transform routines for evaluating S(k).

We have evaluated the critical disorder strength ∆c using the fourth order Binder cummulant
for the three lattices. These values are: (a) 2.278±0.002 for SC lattice, (b) 3.316±0.002 for BCC
lattice and (c) 5.160±0.002 for FCC lattice [14, 23]. It is convenient to define δ = (∆−∆c)/∆c, as
the critical disorder strength ∆c is different for the different lattice types. Fig. 1 shows the typical
GS morphologies of the RFIM on a SC lattice in (a) the paramagnetic regime (δ = 0.08) and (b)
ferromagnetic regime (δ = −0.05). In the paramagnetic regime, the GS has many domains of
up and down spins separated by rough interfaces. In the ferromagnetic regime, however, there
is a single large cluster of up (down) spins with small impurity clusters of down (up) spins. As
a result, it is difficult to extract the interfacial properties in this phase. Therefore, at ∆ < ∆c,
we create interfaces by the following procedure. We apply periodic boundary conditions in the
x- and y-directions and fix the spin values at z = 1, L as

σ(x, y, z = 1) = −1,

σ(x, y, z = L) = +1. (12)



Figure 1. Typical ground state morphologies of the RFIM on a SC lattice of size 1283 in: (a)
the paramagnetic phase (δ = 0.08) and (b) the ferromagnetic phase (δ = −0.05). Green (gray)
and blue (black) regions represent up and down spins, respectively.
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Figure 2. (a) Ground state morphology of the RFIM on a SC lattice of size 1283 with anti-
parallel boundary conditions in the z-direction in the ferromagnetic regime (δ = −0.05). Green
(gray) and blue (black) regions represent up and down spins, respectively. (b) Log-log plot of
w(L,∆) vs. L for the GS of the RFIM on a SC lattice at δ = −0.05,−0.1,−0.15. The slope of
the best-fit line to the small-r regime gives α = 0.62± 0.025.

Fig. 2(a) shows the typical GS morphology of the RFIM on SC lattice at δ = −0.05 subject
to these boundary conditions. There is a well-defined rough interface between up and down
domains. In Fig. 2(b), we show the log-log plot of the rms width w(L) vs. L of such interfaces
on a SC lattice for δ = −0.05,−0.1 and −0.15. From the slope of the best linear fit, we obtain
the roughness exponent α ' 0.62± 0.025.

We now study the effect of lattice structure on the GS morphologies. In Fig. 3(a), we plot
1 − C(r,∆) vs. r/ξ on a log-log scale for SC, BCC and FCC lattices in the ferromagnetic
regime (δ = −0.01). Our system is not translationally invariant in the z-direction. Therefore,
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Figure 3. (a) Log-log plot of 1− C(r,∆) vs. r/ξ for the RFIM on SC, BCC and FCC lattices
with Gaussian disorder in the ferromagnetic regime (δ = −0.01). The corresponding log-log plot
of the scaled structure factor ξ−2S(k,∆) vs. kξ is shown in (b). The structure factor shows
a non-Porod tail: S(k,∆) ∼ k−(d+α). Best-fits to the data yield α = 0.66 ± 0.02. (c) Log-log
plot of 1−C(r,∆) vs. r/ξ for the RFIM on SC, BCC and FCC lattices with Gaussian disorder
in the paramagnetic regime (δ = 0.08). The corresponding log-log plot of the scaled structure
factor ξ−2S(k,∆) vs. kξ is shown in (d). Best-fits to the data yield α = 0.5± 0.01.

we compute the spin-spin correlation function C(r) in the (xy)-plane at z = h̄, where h̄ is the
average height of the interface from the z = 0 plane. The linear behaviour of the small-r region
yields slightly different values of α for the three lattices in the range ≈ 0.64 − 0.68. This is
consistent with the roughness exponent measured from w(L) in Fig. 2(b). We stress that the
correlation function data yields a more accurate measure of α, as it is obtained by averaging
over all interfaces in the system. In Fig. 3(b), we plot the scaled structure factor ξ−2S(k,∆)
vs. kξ for the correlation functions in Fig. 3(a). It shows a distinct non-Porod behaviour:
S(k) ∼ k−(d+α). In Figs. 3(c) and (d), we show the corresponding 1 − C(r,∆) and S(k,∆)
plots for the SC, BCC and FCC lattices in the paramagnetic regime (δ = 0.08). Best fits to
the data yields α = 0.5 ± 0.01, distinct from the ferromagnetic case. Note that the scaling is
excellent, indicating that the interfacial textures are unaffected by the lattice structure in the
paramagnetic regime.

In Fig. 4(a) we show 1−C(r,∆) vs r/ξ on a log-log scale for G, U and B disorder on SC lattice
in the paramagnetic regime (δ = 0.1). The corresponding scaled structure factor ξ−3S(k,∆)
is plotted in Fig. 4(b) on a log-log scale. We find that all the three data sets show excellent



0.4

0.6

0.8

1.0

10−1 100

0.5

(a)
1
−
C

(r
,∆

)

r/ξ

G
U
B 10−7

10−6

10−5

10−4

10−3

100 101

−3.5

(b)

ξ−
3
S

(k
,∆
,h

)

kξ

G
U
B

Figure 4. (a) Log-log plot of 1−C(r,∆) vs. r/ξ for the RFIM on SC with Gaussian, Uniform
and Bimodal disorder in the paramagnetic regime (δ = −0.01). The corresponding log-log plot
of the scaled structure factor ξ−2S(k,∆) vs. kξ is shown in (b). The slope of the best-fit line to
the data yields α = 0.5± 0.01.

collapse. From the best fits to the data we obtain the roughness exponent α = 0.5± 0.01. Thus
in the paramagnetic phase, the interfacial properties in the RFIM are unaffected by the form of
the underlying lattice or disorder.

Finally, we compare our numerical results with the neutron scattering data of randomly
diluted antiferromagnets (DAFFs) in a uniform field. They have been some of the most
well studied realizations of the RFIM ever since Fishman and Aharony established their
equivalence [1, 24, 25, 26]. In Fig. 5 we plot S(k) vs k for the following data sets on a log-
log scale. The critical temperature, the experimental temperature and the applied magnetic
field strength are provided in the parantheses:
(1) Fe0.46Zn0.64F2 (32.11 K, 32.34 K, 3.0 T) [24];
(2) Co0.35Zn0.65F2 (13.25 K, 2 K, 5.0 T) [25];
(3) Fe0.6Zn0.4F2 (46.13 K, 46.3 K, 2.0 T) [26];
The solid line with slope −4 corresponds to the Porod law, which arises from scattering off
smooth interfaces. Clearly, all data sets are non-Porod with slopes greater than −4 indicating
that the interfaces separating the phases are fractal. We do not expect to detect the small
variations in the slopes due to different lattice structures as the accuracy of the scattering data
is limited by the resolution function of the detector.

4. Summary and Discussion
The random field Ising model (RFIM) is simplest example of a system with quenched disorder
and provides a framework to study the effects of randomness and disorder on interfacial
properties. In this paper we have analysed the influence of (i) different lattice types, viz.,
simple cubic (SC), body-centered cubic (BCC) and face-centered cubic (FCC) and (ii) different
disorder distributions, viz., Gaussian (G), Uniform (U) and Bimodal (B) on the ground state
(GS) morphologies of the RFIM. We used a computationally efficient graph-cut procedure to
obtain the exact ground states at T = 0. We summarize our results as follows:
(a) The GS morphologies of the RFIM comprise of compact domains separated by rough fractal
interfaces. We have analyzed these morphologies using spin-spin correlation function C(r) and
structure factor S(k).
(b) The correlation function C(r,∆) shows a cusp singularity at small-r characterized by the
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Figure 5. Log-log plot of neutron scattering data of DAFFs: (1) Fe0.46Zn0.64F2 (Tc = 32.11 K,
T = 32.34 K, H = 3.0 T) [24]; (2) Co0.35Zn0.65F2 (Tc = 13.25 K, T = 2 K, H = 5.0 T) [25];
(3) Fe0.6Zn0.4F2 (Tc = 46.13 K, T = 46.3 K, H = 2.0 T) [26]; The data sets have been shifted
vertically for clarity. The solid line of slope −4 corresponds to Porod scattering from smooth
interfaces. All data sets are non-Porod with slope greater than −4, implying scattering off fractal
interfaces.

cusp or roughness exponent α. The structure factor shows a corresponding non-Porod behaviour
S(k,∆) ∼ k−(d+α) implying scattering off fractal interfaces.
(c) In the ferromagnetic phase, the roughness exponent α ' 0.66 for the SC lattice, with minor
variations for BCC and FCC lattices. They may be attributed to the different nn environments in
the three lattices. The corresponding fractal dimension of the interfaces df = d−α = 2.34±0.02.
(d) In the paramagnetic phase, the roughness exponent α = 0.5 ± 0.01, yielding df = d − α =
2.5 ± 0.01. The interfacial properties are unaffected by the choice of lattice type or disorder
distribition, suggesting that α is a universal exponent in the paramagnetic regime.
(e) Our predictions of fractal interfaces are confirmed in many experimental realizations of the
RFIM by analyzing the tail of the structure factor obtained from neutron scattering experiments.

Interfaces in disordered systems have generated a lot of research interest in the past few
decades. To understand their behaviour and to manipulate them may be the key to realizing
interesting technological applications such as race track memories [10], magnetic logic gates [11],
etc. The energy required by a domain of size R to grow or the barrier energy EB ∼ R2−α

[8, 9, 14, 23]. The interfacial texture therefore plays a crucial role in growth and relaxation.
We believe that our methodologies and analysis may be beneficial from both theoretical and
experimental points of view.
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