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Abstract. Anisotropic but homogeneous, shear-free cosmological models with imperfect
matter sources in f(R) gravity are investigated. The relationship between the anisotropic
stresses and the electric part of the Weyl tensor, as well as their evolutions in orthogonal f(R)
models, is explored. The late-time behaviour of the de Sitter universe (as an example of a locally
rotationally symmetric spacetimes in orthonormal frames) in f(R) gravity is examined. By
taking initial conditions for the expansion, acceleration and jerk parameters from observational
data, numerical integrations for the evolutionary behavior of the Universe in the Starobinsky
model of f(R) have been carried out.

1. Introduction
Despite General Relativity’s (GR) great successes in explaining many cosmological and
astrophysical scenarios, it miserably fails to provide:

• an elegant solution to the early and current accelerated expansion phases of the Universe,

• the mechanism for dark matter production (if one is convinced that dark matter exists),

• a consistent framework to combine gravity with the other three forces of nature.

As a result, recently a large number of alternative, modified or generalized propositions to GR
have emerged, one of which involves the inclusion of higher-order curvature invariants in the
Einstein-Hilbert action [1, 2, 3, 4, 5]:

A =
1

2

∫
d4x
√
−g [f(R) + 2Lm] , (1)

where f(R) is some differentiable function in the Ricci curvature scalar R, g is the determinant
of the spacetime metric gab, Lm is the standard matter Lagrangian, and the natural units
(~ = c = kB = 8πG = 1) have been used. The generalised Einstein Field Equations (EFEs),
obtained from variational principles, is given by

Gab = T̃mab + TRab ≡ Tab , (2)

where the modified matter energy-momentum tensor is given by

T̃mab ≡
Tmab
f ′

, Tmab ≡
2√
−g

δ(
√
−gLm)

δgab
, (3)



and the energy-momentum tensor of the curvature fluid can be defined as

TRab ≡
1

f ′
[
1
2(f −Rf ′)gab +∇b∇af ′ − gab∇c∇cf ′

]
; with f ′ ≡ df/dR, etc . (4)

The energy-momentum tensor of standard matter is given by

Tmab =
2√
−g

δ(
√
−gLm)

δgab
= µmuaub + pmhab + qma ub + qmb ua + πmab , (5)

where we have defined

• µm ≡ Tmabuaub as the energy density

• pm ≡ 1
3(Tmabh

ab) as the isotropic pressure

• qma ≡ −Tmbc ubhca as the heat flux

• πmab ≡ Tmcdhc〈ahdb〉 as the anisotropic pressure

of matter. The four-vector ua ≡ dxa

dt is the normalized 4-velocity of fundamental observers

comoving with the fluid. The covariant time derivative OF any tensor Sa..bc..d along an observer’s
worldlines is defined as

Ṡa..bc..d = ue∇eSa..bc..d , (6)

whereas the fully orthogonally projected covariant derivative for any tensor Sa..bc..d is given by

∇̃eSa..bc..d = hafh
p
c ...h

b
gh

q
dh

r
e∇rSf..gp..q , (7)

with total projection on all the free indices. Here rhab ≡ gab + uaub is known as the projection
tensor. We extract the orthogonally projected symmetric trace-free part of vectors and rank-2
tensors using

V 〈a〉 = habV
b , S〈ab〉 =

[
h(ac h

b)
d −

1
3h

abhcd

]
Scd , (8)

and the volume element for the restspaces orthogonal to ua is given by [6]

εabc = udηdabc = −
√
|g|δ0[a δ

1
b δ

2
c δ

3
d]u

d ⇒ εabc = ε[abc], εabcu
c = 0, (9)

where ηabcd is the 4-dimensional volume element satisfying the conditions

ηabcd = η[abcd] = 2εab[cud] − 2u[aεb]cd. (10)

The covariant spatial divergence and curl of vectors and rank-2 tensors are given as [7]

divV = ∇̃aVa , (divS)a = ∇̃bSab , curlVa = εabc∇̃bV c , curlSab = εcd(a∇̃cSb)d . (11)

In this formalism, ua can be split into its irreducible parts as

∇aub = −Aaub + 1
3habΘ + σab + εabcω

c, (12)

where Aa ≡ u̇a, Θ ≡ ∇̃aua, σab ≡ ∇̃〈aub〉 and ωa ≡ εabc∇̃buc are the 4-acceleration, (volume)
expansion, shear and vorticity of the fluid. The thermodynamic quantities for the curvature



fluid can be defined similarly to the standard matter ones:

µR =
1

f ′

[
1

2
(Rf ′ − f)−Θf ′′Ṙ+ f ′′∇̃2R

]
, (13)

pR =
1

f ′

[
1

2
(f −Rf ′) + f ′′R̈+ f ′′′Ṙ2

+
2

3

(
Θf ′′Ṙ− f ′′∇̃2R− f ′′′∇̃aR∇̃aR

)]
, (14)

qRa = − 1

f ′

[
f ′′′Ṙ∇̃aR+ f ′′∇̃aṘ−

1

3
f ′′Θ∇̃aR

]
, (15)

πRab =
1

f ′

[
f ′′∇̃〈a∇̃b〉R+ f ′′′∇̃〈aR∇̃b〉R− σabṘf ′′

]
, (16)

whereas the total thermodynamics of the matter-curvature fluid composition is described by

µ ≡ µm
f ′

+ µR , p ≡ pm
f ′

+ pR , qa ≡
qma
f ′

+ qRa , πab ≡
πmab
f ′

+ πRab . (17)

The Weyl conformal curvature tensor

Cabcd ≡ Rabcd − 2g[a[cR
b]
d] +

R

3
g[a[cg

b]
d] (18)

can be split into its “gravito-electric” (GE) and “gravito-magnetic” (GM) parts, respectively:

Eab ≡ Cagbhuguh, Hab = 1
2ηae

ghCghbdu
eud. (19)

The GE and GM components influence the motion of matter and radiation through the geodesic
deviation for timelike and null-vector fields, respectively [6]. The GM has no Newtonian
analogue, and is responsible for gravitational radiation.

By covariantly 1 + 3-splitting the Bianchi and Ricci identities

∇[aRbc]d
e = 0 , (∇a∇b −∇b∇a)uc = Rabc

dud (20)

for the total fluid 4-velocity ua, we obtain the following field (propagation and constraint)
equations. The propagation equations uniquely determine the covariant variables on some initial
hypersurface S0 at t = t0:

µ̇m = −(µm + pm)Θ− ∇̃aqma − 2Aaq
a
m − σabπba,m , (21)

µ̇R = −(µR + pR)Θ +
µmf

′′

f ′2
Ṙ− ∇̃aqRa − 2Aaq

a
R − σabπba,R , (22)

Θ̇ = −1
3Θ2 − 1

2(µ+ 3p) + ∇̃aAa −AaAa − σabσab + 2ωaω
a , (23)

q̇ma = −4
3Θqma − (µm + pm)Aa − ∇̃apm − ∇̃bπmab − σbaqmb −Abπmab − εabcωbqcm , (24)

q̇Ra = −4
3ΘqRa +

µmf
′′

f ′2
∇̃aR− ∇̃apR − ∇̃bπRab − σbaqRb

− (µR + pR)Aa −AbπRab − εabcωbqcR , (25)

ω̇a = −2
3Θωa − 1

2εabc∇̃
bAc + σbaωb , (26)

σ̇ab = −2
3Θσab − Eab + 1

2πab + ∇̃〈aAb〉 +A〈aAb〉 − σc〈aσb〉c − ω〈aωb〉 , (27)

Ėab + 1
2 π̇ab = εcd〈a∇̃cHd

b〉 −Θ
(
Eab + 1

6πab
)
− 1

2 (µ+ p)σab − 1
2∇̃〈aqb〉



+ 3σ〈ca
(
Eb〉c − 1

6πb〉c
)
−A〈aqb〉 + εcd〈a

[
2AcHd

b〉 + ωc(Edb〉 + 1
2π

d
b〉)
]
, (28)

Ḣab = −ΘHab − εcd〈a∇̃cEdb〉 + 1
2εcd〈a∇̃

cπdb〉

+ 3σ〈ca Hb〉c + 3
2ω〈aqb〉 − εcd〈a

[
2AcEdb〉 −

1
2σ

c
b〉q

d − ωcHd
b〉

]
. (29)

Restrictions on the initial data to be specified are provided by the constraint equations:

(C1)a := ∇̃bσab − 2
3∇̃aΘ + εabc

(
∇̃bωc + 2Abωc

)
+ qa = 0 , (30)

(C2)ab := εcd(a∇̃cσb)d + ∇̃〈aωb〉 −Hab − 2A〈aωb〉 = 0 , (31)

(C3)a := ∇̃bHab + (µ+ p)ωa + εabc

[
1
2∇̃

bqc + σbd

(
Edc + 1

2π
d
c

)]
+ 3ωb

(
Eab − 1

6π
ab
)

= 0 , (32)

(C4)a := ∇̃bEab + 1
2∇̃

bπab − 1
3∇̃aµ+ 1

3Θqa

− 1
2σ

b
aqb − 3ωbHab − εabc[σbdHc

d − 3
2ω

bqc] = 0 , (33)

(C5) := ∇̃aωa −Aaωa = 0 , (34)

and the Gauß-Codazzi equations, given by

R̃ab + σ̇〈ab〉 + Θσab − ∇̃〈aAb〉 −A〈aAb〉 − πab −
1

3

(
2µ− 2

3
Θ2

)
hab = 0 . (35)

Here R̃ab is the Ricci tensor on 3-D spatial hypersurfaces, the trace of which gives the
corresponding (3-curvature) Ricci scalar: R̃ = 2µ− 2

3Θ2 + 2σ2. The constraint equations must
remain satisfied on any hypersurface St for all comoving time t.

In orthogonal cosmological models, the matter energy density µm and isotropic pressure pm
are measured by an observer moving with the velocity ua. These models are characterised by
the matter energy-momentum tensor representing an anisotropic fluid without heat fluxes [8]

Tmab = µmuaub + pmhab + πmab , (36)

and by an irrotational and non-accelerated flow of the vector field ua, ωa = 0 = Aa. The revised
evolution and constraint equations for orthogonal models are now given by

µ̇m = −(µm + pm)Θ− σabπba,m , (37)

µ̇R = −(µR + pR)Θ +
µmf

′′

f ′2
Ṙ− ∇̃aqRa − σabπba,R , (38)

Θ̇ = −1
3Θ2 − 1

2(µ+ 3p)− σabσab , (39)

q̇Ra = −4
3ΘqRa +

µmf
′′

f ′2
∇̃aR− ∇̃apR − ∇̃bπRab − σbaqRb , (40)

σ̇ab = −2
3Θσab − Eab + 1

2πab − σ
c
〈aσb〉c , (41)

Ėab + 1
2 π̇ab = εcd〈a∇̃cHd

b〉 −Θ
(
Eab + 1

6πab
)
− 1

2 (µ+ p)σab − 1
2∇̃〈aq

R
b〉

+ 3σ〈ca
(
Eb〉c − 1

6πb〉c
)
, (42)

Ḣab = −ΘHab − εcd〈a∇̃cEdb〉 + 1
2εcd〈a∇̃

cπdb〉 + 3σ〈ca Hb〉c

+ 1
2εcd〈aσ

c
b〉q

d
R , (43)



(C∗1)a := ∇̃bσab − 2
3∇̃aΘ + qRa = 0 , (44)

(C∗2)ab := εcd(a∇̃cσb)d −Hab = 0 , (45)

(C∗3)a := ∇̃bHab + εabc

[
1
2∇̃

bqcR + σbd

(
Edc + 1

2π
d
c

)]
= 0 , (46)

(C∗4)a := ∇̃bEab + 1
2∇̃

bπab − 1
3∇̃aµ+ 1

3ΘqRa − 1
2σ

b
aqb

− εabcσbdHc
d = 0 . (47)

We notice that a new constraint

(C∗5)a := ∇̃apm + ∇̃bπmab = 0 (48)

comes out of equation (24) as a result of the orthogonality assumption.

2. Shear-free anisotropic models with an imperfect fluid
For imperfect fluids, the the thermodynamic evolution equation for the anisotropic pressure is
given by [9, 10]

τ π̇ab + πab = −λσab . (49)

Here τ and λ are, respectively, relaxation and viscosity parameters. For negligible τ and a
positive constant λ, the equation of state between the shear and anisotropic pressure is given
by [8]

πab = −λσab . (50)

Making use of equations (17) and (16), equation (50) can now be rewritten:

πmab + f ′′∇̃〈a∇̃b〉R+ f ′′′∇̃〈aR∇̃b〉R = σab

(
Ṙf ′′ − λf ′

)
. (51)

This implies that shear-free in the case of shear-free fluid spacetimes, the above equation and
the Gauß-Codazzi equations (35) simplify, respectively, to

πmab = −f ′′∇̃〈a∇̃b〉R− f ′′′∇̃〈aR∇̃b〉R , (52)

R̃ab − 1
3R̃hab = πab =

1

f ′

(
πmab + f ′′∇̃〈a∇̃b〉R+ f ′′′∇̃〈aR∇̃b〉R

)
. (53)

These results show that even in the case of vanishing anisotropic pressure from matter, spacetime
geometries are not necessarily of constant curvature and hence not necessarily FLRW universes.
If we allow the matter anisotropic pressure to be nonzero despite a vanishing shear, constant-
curvature models are allowed, unlike in GR, provided

f ′′∇̃〈a∇̃b〉R+ f ′′′∇̃〈aR∇̃b〉R = 0 . (54)

In the case of shear-free fluid spacetimes, we notice from equation (41) that the tidal effect
(represented by the EM component of the Wely tensor) on the anisotropic stress is given by

πab = 2Eab . (55)

Thus the anisotropic stresses are related to the electric part of the Weyl tensor in such a way
that they balance each other, a necessary and sufficient condition for the shear to remain zero
if initially vanishing [8, 11].



For nonzero, second-order shear contributions, equation (41) can be approximated by

σ̇ab ≈ −2
3Θσab ,

(
σ2
). ≈ −4

3Θσ2. (56)

This clearly shows that small perturbations of shear are damped in the class of orthogonal f(R)
models in f(R). In agreement with GR results [8], these models are stable if expanding.

Shear-free orthogonal models satisfying equation (55) are purely EM, i.e., Hab = 0. Thus,
equation (43) reduces to an identity

εcd〈a∇̃cEdb〉 = 1
2εcd〈a∇̃

cπdb〉 , (57)

whereas using equations (42) and (47), it can be shown that the evolution and divergence of the
EM Weyl tensor are given by

Ėab = −2
3ΘEab − 1

4∇̃〈aq
R
b〉 , ∇̃bEab = 1

6

(
∇̃aµ− 1

3ΘqRa

)
. (58)

The decaying of the EM Weyl tensor, and hence of the anisotropic stress tensor, with the
expansion is demonstrated by the relation(

E2
).

= −4
3ΘE2 − 1

8

(
∇̃〈aqRb〉E

ab + ∇̃〈aqb〉REab
)
, E2 ≡ EabEab. (59)

3. Illustration using the Starobinsky f(R) model
As a simple illustration, we will try to integrate the Friedmann equation in locally rotationally
symmetric spacetimes

3
ȧ2

a2
+

k

a2
= µ, (60)

provided the barotropic EoS , pm = (γm − 1)µm. If we rewrite (60) using equations (17) and
(37) (for shear-free cases, of course), we obtain the model-dependent equation

3
ȧ2

a2
+

k

a2
= µ0ma

−3γm +
1

f ′

[
1

2
(Rf ′ − f)− 3ȧ

a
f ′′Ṙ

]
(61)

where µ0m is the matter density at the time t = t0 and γm is the EoS parameter for the matter
content. A qualitative analysis of the late-time behavior of the solutions for (61) in flat k = 0
spacetimes without matter gives a de Sitter (dS) solution, with R = 6H2

0 and equation (61)
solves to

H2
0 =

1

6f ′
(Rf ′ − f). (62)

The Friedmann equation (60) for generic f(R) model is, in general, a fourth-order ordinary
differential equation (ODE). There are no known exact solutions for the full evolution history,
but the equation can be solved numerically (such as in terms of quadratures) given appropriate
initial conditions. For the purpose of our illustration, if we choose the Starobinsky model,

f(R) = R+ αR2 , (63)

equation (61) reduces to the following differential equation:

3
ȧ2

a2
= µ0ma

−3γm +
α

2

R2 − 12HṘ

1 + 2αR
, R = 6

(
ȧ2

a2
+
ä

a

)
. (64)



This is a third-oder ODE in a(t). To solve it, let us use the cosmological initial conditions (ICs)
for the Hubble H, deceleration q, jerk j, and snap s parameters:

q ≡ − äa
ȧ2
, j ≡ a2

ȧ3
d3a

dt3
, s ≡ a3

ȧ4
d4a

dt4
(65)

evaluated at the present time t = t0, such that

a(0) = a0 = 1 , ȧ(0) = H0a0 , ä(0) = −H2
0a0q0 ,

d3a

dt3
(0) = H3

0 j0a
−1
0 . (66)

A series solution using these cosmographic parameters in equation (64), evaluated at t = t0
can be given by

a(t) = 1 +H0 (t− t0)− 1/2H0
2q0 (t− t0)

2

− 1

216

(
−3H0

2 + 54H0
4α+ µm + 12αµmH0

2 − 12αµ0
mH0

2q0 + 18αH0
4q0

2 + 36H0
4α q0

)
αH0

(t− t0)
3

+
1

2592

(t− t0)
4

αH0
2 ×

(
9H0

4 + 162H0
6α− 12µ0

mH0
2 + 18H0

4αµ0
m + 108H0

4αµ0
mq0 − 54H0

6α q0
2

+324H0
6α q0 − 108αH0

6q0
3 − 6µ0

mH0
2q0 + 9µ0

mγmH0
2 + µm

2 + 90αµ0
mH0

4q0
2 − 12αµ0

m
2
H0

2q0

+12αµm
2H0

2 + 108µ0
mγmH0

4α− 108µ0
mγmH0

4α q0

)
+O

[
(t− t0)5

]
(67)

and can be used to check observational constraints. If we solve equation (64) numerically and plot the
solutions versus time, we notice from figure 1 that H is an oscillatory function which can be identified in
the late-time as the ΛCDM era.

Figure 1. Numerical solution for H(t). Model: α = 0.02 , a0 = H0 = 1 , q0 = −0.7. The
solution, which is oscillatory in nature, can be identified in the late-time as the ΛCDM era.



The Hubble parameter and its first, second and third derivatives of H are plotted in figure 2.

Figure 2. Numerical solution for the first three derivatives of the Hubble parameter. Note the
singularity-free nature of the solution, as none of the higher derivatives of H diverges.

No higher derivatives of H diverges and, therefore, our solution is singularity free. Specializing to dust

models, i.e., Ω0
m ≡

µ0
m

3H2
0

= 0.3 , γm = 1, we plot the phase portrait for the Starobinsky model in figure 3.

The model is well established as an attractor. Figure 4 shows that the model is a late-time or
asymptotic attractor, the solutions to the equations of motion have a generic form independent of the
initial conditions.



Figure 3. The phase portrait for Starobinsky’s dust model. The scale factor a(t) is a
monotonically increasing function of cosmic time t.

Figure 4. Late-time asymptotic attractors for Starobinsky’s model of gravitation. The solutions
to the equations of motion have a generic form independent of the initial conditions.



4. Conclusion
In this work we have looked at classes of shear-free anisotropic cosmological spacetimes in f(R) gravity.
Specializing to orthogonal models with irrotational and non-accelerated fluid flows without heat fluxes,
we have derived the relationship between the anisotropic stresses and electric part of the Weyl tensor,
which is the necessary and sufficient condition for the shear to be vanishing forever if vanishing initially.

Moreover, we have shown that within the class of orthogonal f(R) models, small perturbations of
shear are damped. Considering a subclass of locally rotationally symmetric spacetimes with barotropic
equations of state, we have shown that the late-time behaviour of the dS universe in f(R) gravity should
satisfy equation (62).

Finally we have provided a power-series solution for a(t) and studied the behavior of the expansion
parameter H(t) by numerically integrating the Friedmann equation (64), where the initial conditions for
H0 , q0 and j0 are taken from observational data.

A full computational implementation of the field equations under realistic initial conditions is left for
a subsequent work.
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