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Abstract. Temperature is a vital thermodynamical function for physical systems. Knowledge
of system temperature permits assessment of system ergodicity, entropy, system state and
stability. Rapid theoretical and computational developments in the fields of condensed matter
physics, chemistry, material science, molecular biology, nanotechnology and others necessitate
clarity in the temperature specification. Temperature-based materials simulations, both
standalone and distributed computing, are projected to grow in prominence over diverse research
fields. In this article we discuss the apparent variability of temperature modeling formalisms
used currently in atomistic molecular dynamics simulations, with respect to system energetics,
dynamics and structural evolution. Commercial simulation programs, which by nature are
heuristic, do not openly discuss this fundamental question. We address temperature specification
in the context of atomistic molecular dynamics. We define a thermostat at 400K relative to a
heat bath at 300K firstly using a modified ab-initio Newtonian method, and secondly using a
Monte-Carlo method. The thermostatic vacancy formation and cohesion energies, equilibrium
lattice constant for FCC copper is then calculated. Finally we compare and contrast the results.

1. Introduction
Temperature is a crucially important parameter in almost all systems and its specification is
not necessarily straightforward, particularly for atomistic systems. Some simulations report
temperature-based results that are within “tolerable” accuracy bounds, by relying implicitly
on the temperature dependence of another parameter. For instance, some have investigated
temperature effects by presuming its expansive effects on lattice parameters indirectly through
empirically determined linear expansivity of the bulk material. However, motivated by the
rapidly growing field of nanotechnology, it is understood that macroscopic, microscopic and
nanoscopic properties are not necessarily commensurate. These emerging fields necessitate the
correct thermodynamical modeling and specification of simulation temperature. The aim of this
article is to compare and contrast the effects of two thermostat specifications on thermally
sensitive parameters of a simple, face-centered cubic (FCC) arrangement of copper atoms.
The simulations are standalone for a computationally cost-effective, small atomic array to aid
comparison with respect to accuracy. Thermostats are used for a number of reasons in condensed
matter simulations, such as in the search for high-temperature dynamics, annealing, formation
energies, structural changes, and other effects. Additionally, limiting of steady state drifts caused
by encroaching numerical errors in MD simulations, as well as provision for heat evacuation in
non-equilibrium MD simulations can be done through thermostats. We examine two thermostat
definitions based on



(i) Energy Equipartition theorem (EPT), and

(ii) the Monte-Carlo (MC) approach.

1.1. Thermostats in EPT methods
A time instant δt of simulation deterministically defines the evolution of length and energy
parameters. This means that given a particular input, the application of the iterative algorithm
will produce the same result at time δt. System energetics are conveyed by the Hamiltonian,

H(x̄, p̄) = U(x̄) +K(p̄),

where U and K are total kinetic and potential energy respectively, x̄ is displacement and
p̄ is momentum. Instantaneous temperature T (t) is defined in terms of the instantaneous
internal kinetic energy ε. Then, macroscopic system temperature equals averaged instantaneous
temperature, i.e. T=⟨T (t)⟩ [1]. In the thermostatic approach variance in the Hamiltonian,
as might arise from computational error accumulation, is tolerable because the thermostat is
referenced to a heat bath that tightly constrains temperature variations about the equilibrium
value. At equilibrium, the standard deviation σ(H) is related to isochoric heat capacity, cV , by

σ2(H) = ⟨H2⟩ − ⟨H⟩2 = kBT
2cV , (1)

where kB is Boltzmann constant. Internal particle motion within a system of particles is generally
a complex combination of translations and rotations about a center of mass which contribute
three and six degrees of freedom respectively. Computational simplifications can be achieved
by subtraction of degrees of freedom when stochastic and friction are absent from the system
because energy exchange between mechanically uncoupled degrees does not then occur [2, 3]. If
the center of mass is at rest and the particle motions are irrotational, then

T =
2

3NkB
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2

3NkB

N∑
i=1

mi

2
v̄2i . (2)

Using the discrete notation p̄i(t) := p̄ni , then in the absence of friction and stochastic forces the
velocity Störmer-Verlet method [4, 5, 6] discretizes particle position and velocity as
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F
n
i

2mi
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i + F
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i
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)
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Since instantaneous temperature T (t) is directly related to atomic velocities, thermostats require
a mechanism to control the rate of change of particle velocities. This can be achieved either
by introducing friction or by direct velocity scaling. In the first method or Langevin approach
[7, 8, 9], Newton’s second law is modified by introducing a stochastic force R̄i(t) and a friction
coefficient γi(t)>0 into the acceleration of the i-th particle:

˙̄vi(t) = F̄i(t)/mi − γi(t)v̄i(t) + R̄i(t)/mi (4)

In the absence of stochasticity, the friction term loses its traditional meaning and only indicates
heat flow direction relative to the infinite heat bath. In which case, γi(t)>0 implies decelerating
particles and consequently loss of heat to the bath. Conversely, γi(t)<0 implies heat gain from
the bath and accelerating particles. This can also be interpreted as isochoric system pressure
fluctuations. The second method or velocity scaling starts at Eq. 2 to define a scaling factor β
in terms of temperatures, kinetic energies and consequently velocities [10, 11, 12, 13] i.e.

β2 :=
T ′

T
=

ε′

ε
=
( v̄′i
v̄i

)2
⇒ v̄′ := βv̄. (5)



After every δt step, the velocity is therefore reassigned a value v̄′ instead of v̄ for the new
temperature to be T ′. Velocity scaling using constant β affects temperature distribution strongly,
and a damping factor Γ∈(0,1) can be introduced [11] s.t. β = (1+Γ(T ′/T−1))2. If β is adjusted
at the end of every time step δt, then dT/dt ∼ (T − T ′), i.e. the temperature rate of change
depends on the temperature difference. The method does not remove local correlations in particle
motions. Setting γni (t)=ξnmi, the non-stochastic net force is

mi
v̄n+1
i − v̄ni

δt
= F̄n

i − ξnmiv̄
n
i , for δt → 0 (6)

with new velocities
v̄n+1
i = F̄n

i δt/mi + βv̄ni , (7)

where the term β=(1− ξnδt) describes the friction-time behavior. Using F̄n
i and F̄n+1

i in Eqs.
3 and 6 gives new position and velocity:
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where φ=(1 + δt
2 ξ

n+1). Therefore, friction amounts to scaling present velocity first by β, then
overall by 1/φ. For a thermostat kinetic energy is constant i.e. dε/dt=0. For the i-th particle

mi ˙̄vi = F̄ − ξmiv̄i,
dε

dt
=

N∑
i=1

miv̄i · ˙̄vi =
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v̄i · (F̄ − ξmiv̄i). (9)

Writing F̄ = −∇̄Vx̄i leads to
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, (10)

hence the constant temperature condition:

ξ = − dV/dt∑N
i=1miv̄2i

=
dV/dt

2ε
. (11)

Some thermostats introduce an extra degree of freedom in the form of heat bath temperature.
This conveys the extent of system–bath coupling [12, 13]. Since ξn arises from friction, the rate
of system kinetic energy loss is related to the friction-time behaviour:

dξ

dt
=
( N∑

i

miv̄
2
i − 3NkBT

bath
)
/M for M ∈ R+, (12)

where M >> 1 implies less frictional coupling. To determine v̄n+1
i in Eq.8, the term ξn+1

must be known. Many nonlinear methods [14, 15, 16] arise from discretizations of Eq.12, e.g.
midpoint time averaging:

ξn+1 = ξn +
δt

2M

(dξ
dt

∣∣∣n +
dξ

dt

∣∣∣n+1)
(13)

gives one possible thermostat when dξ/dt from Eq.12 is used. Simpler, more approximate
discretizations are possible. In general, a Hamiltonian system may have stable integrators but



the equations of motion may not be derivable. If the Hamiltonian is time-independent [17, 18]
and can be written as

H(x̄, p̄) =

N∑
i=1

p̄2i
2miγ2

+ V (x̄1, . . . , x̄N ) +
p̄2γ
2M

+ 3NkBT
bath ln γ, (14)

then the equations of motion and phase space can be derived. The phase space may be defined
in terms of intensive macroscopic variables, which are aggregates of microscopic contributions.
Explicit reference to bath temperature generally avoids systematic energy drifts, implying
ergodicity [19, 20, 21]. In such a system, particles cannot leave the ensemble. Therefore,
assuming equal Maxwell-Boltzmann particle distribution probabilities and ergodicity a priori
may result in a canonical ensemble (NVT) of microstates and momenta [17]. The probability
distribution of microstates over radial and momentum space takes the form

ρ(x̄, p̄) = e−H(x̄,p̄)/kBT
/∫∫

e−H(x̄,p̄)/kBTdx̄dp̄. (15)

Putting p̄i = mi ˙̄xi allows simplification in Cartesian coordinates. The particle velocities can be
shown to also follow a Maxwell-Boltzmann distribution. There are other MD thermostats that
are specified under various limiting conditions [17, 22, 23]. Caution is needed when comparing
thermostats grouped holistically within the MD approach. This is because a particular MD
thermostat implementation may facilitate determination of a particular parameter, but is
not generally advantageous to all situations. For instance, Hoover-Evans [20, 24] and Haile-
Gupta [23] thermostats are inherently time-reversible, whereas Andersen [10] and Berendsen
[11] thermostats are not.

1.2. Thermostats using MC methods
A simpler thermostat can be defined non-deterministically by sampling relative particle positions
using Monte-Carlo (MC) techniques [17, 25]. This involves testing the effort of a random
displacement of a particle within the domain (i.e. box dimensions) against the change in potential
energy ∆U(x̄) without involving kinetic energy. The move is “acceptable” if a probability p can
be found such that

p = min{e−β∆U(x̄), 1}, where β = 1/kBT. (16)

The microstate probability distribution ρ(x̄) is then

ρ(x̄) =
e−βU(x̄)∫
e−βU(x̄)dx̄

. (17)

This form, where particle positions are sampled exponentially without geometrical constraints,
encapsulates a thermostat in the canonical ensemble that obeys Maxwell-Boltzmann (MB)
thermodynamics.

1.3. Timescale and macroscopics
Timescale can be thought of as times larger than the relaxation time in interatomic particle
collisions but smaller than the shortest experimental observation time for the system. The
deterministic approach, unlike the MC approach, is explicit in the timescale. This naturally
leads to the fundamental question of whether time-correlation functions can be found in the
MC approach to describe macroscopic time-based phenomena. Instantaneous particle positions
depend on the time behavior and temperature spread over particles. It is therefore important to
deal with temperature-time behavior in the MC method, at the very least qualitatively, in the



absence of analytical expressions [10]. The average temperature per particle is taken as T̄ for
the system in contact with a bath at temperature T bath. Many time-based system parameters
of interest such as diffusion coefficients are calculated as statistical averages in the Einstein
formulation, or by time-correlation integrals in the Green-Kubo formulation. At constant volume
V the change in average energy is dĒ=cvdT̄ . By Newton’s law of cooling:

1

cv

dĒ

dt
=

dT̄

dt
= α(T bath − T̄ ), where α =

cv

κV 1/3
. (18)

The constant κ encapsulates temperature inhomogeneities and system shape and is estimated
from the heat flow continuity and flux equations:

J̄(x̄, t) = −κ∇̄T (x̄, t)

∂T (x̄, t)

∂t
= −V

cv
∇̄ · J̄(x̄, t). (19)

Solving Eq. (18) gives
T̄ (t) = T0 + [T̄ (0)− T bath]e−αt, (20)

on a timescale such that stochasticity in T̄ (t) averages out. From purely theoretical
considerations the choice of either a specific MD, or even the MC thermostat, is subjective.
However, one expects correct dynamics with a thermostat that accommodates temperature
fluctuations on the timescale.

2. Simulation
The present work investigates the effect of the foregoing thermostat definitions, deterministic
and Monte Carlo, on the equilibrium lattice constant and formation energies on a isochoric,
monoatomic array of n=1583 (plus one, if with a surface adatom) copper atoms in the FCC
structure, and a heat bath at 300K where necessary. The system is decidedly simple for speedier
computation and comparison. The deterministic approach employs the Sutton-Chen (SC)
embedded atom model (EAM) form of the Finnis-Sinclair potential [26, 27, 28, 29]. The authors
have previously reported their implementation of SC code [3], which was modified for the present
work to accommodate velocity scaling-based thermostats using Störmer-Verlet integration [6],
as well as the MC thermostat. EAM methods are not purely deterministic but their lower
computational effort for more particles and better handling of larger timescales is attractive
[30]. The EAM Hamiltonian can be written [28, 30, 31]

H =
1

2

N∑
ij

V (xij) +

N∑
i

F (ρ̄i), (21)

where V=V (x̄ij) is the pairwise interaction potential energy between particles i and j separated
a distance x̄ij , and F=F (ρ̄i) is the embedding energy of atom i as a function of the host
electron density. For FCC metals the translation and rotation invariant total potential energy
[4, 26, 32, 33] can be written

V = ε

N∑
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j=i+1

( σ

xij

)n
− c
√

Si

)
, (22)
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( σ

xij

)m
, (23)



and σ is a length parameter e.g. lattice constant, ε is an energy scaling factor. The fitting
constants are c, m and n, where m < n. The force can be written as

F = −∇V (x̄). (24)

Hence, for the i-th particle, the force is

F i = ε

N∑
j=1, j ̸=i

[
n
( σ

xij

)n
− cm

2

(
1√
Si

+
1√
Sj

)( σ

xij

)m] x̄ij
x2ij

, (25)

where x̄ij = (x̄j − x̄i) is the vector between particles i and j, expressed in terms of particle
positions. The Hamiltonian (H) is here accepted to within O(δt2) discretization error, but is
ideally constant [34]. Other temperature dependent effects like diffusion can be investigated
through the effect of the thermostat definition on existing literature models. For instance,
diffusion [35] is probabilistically modeled by

D = D0

∏
PmPv = D0e

−Em/kBT e−Ev/kBT , (26)

where Pm and Pv are inter-lattice point migration and vacancy availability probabilities
respectively, expressed in terms of migration energy Em and vacancy formation energy Ev.
These energies can be evaluated for each thermostat T , by considering the various vacancy
formation and migratory mechanisms for the perfect crystal lattice under adatom perturbation
[36]. We consider only for the {100} equivalent planes of the lattice-point to surface Schottky
defect creation shown in Fig.1 and from-infinity to surface migration, shown in Fig.2. The

Figure 1. Schottky defect forma-
tion by surface migration.

Figure 2. From-infinity to
surface migration.

software reported in [3] calculates the average cohesive energy, Ecoh, as the difference between
the total potential energy of the perfect, undisturbed FCC lattice and when all N atoms are
“blown apart” to infinite interatomic separation i.e.

Ecoh = (Uapart,tot − Uperfect)/N. (27)



3. Results and discussion
The isotherm implementations using both the deterministic model and the Monte-Carlo method
were taken to be at 400K relative to a bath temperature of 300K. The two thermostats were used
to calculate cohesive (Ech), vacancy formation (Ev), Schottky formation (Esch) (1), infinity-to-
surface atom capture (Einf ) and extraction energies (Eext), and equilibrium lattice constant
(aeq) under constant volume. Table 1 lists the input parameters for the simulation of copper.
All adatom effects were simulated under the assumption that they occurred relative to planes
equivalent to the (100) plane. Table 2 shows the results of the two thermostats. The point at
infinity is taken approximately 100 lattice parameters away from the bulk of the array, since the
atoms are assumed to be in a closed box of fixed volume.

Table 1. SC simulation parameters for FCC copper.

ε (eV) a (Å) c n m N

0.012382 3.61 39.432 9 6 1583 (+1 adatom)

Table 2. Parametric comparison of deterministic (A) versus MC (B) thermostats on Cu(100) at
400K.

Method aeq (Å) Ev Eext Ecoh Esch Einf

(eV)

A 3.63±0.01 1.31±0.02 4.39±0.01 1.28±0.01 4.41±0.01 2.96±0.01
B 3.74±0.02 1.66±0.30 5.84±0.62 2.17±0.60 5.98±0.60 3.50±0.50

The results shown in Table 2 were compared with literature values, where abundant empirical
data exists in the literature at 400K for the deterministic approach in Method A [37, 38, 39, 40],
than for the MC approach, Method B. The MC method requires aggregation over several steps
per move to give a result obeying the canonical distribution, and the actual reported results
in Table 2 are time-based averages of several computations per move, with a move acceptance
probability of around 30%. The move perturbations are selected randomly through the Markov-
chain approach, with a probability dependent on ∆xN , which represent all possible generated
combinations due to perturbing inter-particle separation, x. The difficulty with the MC approach
is therefore appreciable for larger ensembles owing to the total size of possible configurations.
This accounts for the lower MC method accuracies depicted in the Table 2.

4. Conclusion
In this article we present the rationale for two broad thermostat definitions, the MD and
MC thermostats. It then proceeds to describe their basic approaches and then compares and
contrasts them. The choice of a thermostat for a given simulation is motivated by several
factors, not least being the particular parameter of interest, rather than ease of implementation.
In summary, the MD approach is generally deterministic, time-reversible, and canonical in the
Hamiltonian and potential energy. The behavior of the system Hamiltonian is tolerant of drifts
from the equilibrium, making the method more amenable iterative error accumulation. External
degrees of freedom for the system, such as a bounding bath temperature, can readily be defined in



terms of their ergodic impact on the system. The calculated dynamical trajectories can therefore
be much smoother, even though method generally lacks the ability to constrain the total kinetic
energy. The MC method has the main advantage of ease of thermostatic specification and
description of external degrees of freedom. In this work, several difficulties were associated with
the MC method, particularly that of determining time-related dynamics and the drastically
increased combinations as a power of ensemble size. However, the article highlights the
importance of correct temperature specification. Commercial packages are necessarily heuristic
with respect to this specification and as systems evolve, particularly more towards nanoscale
aggregates and ever shorter interaction timescales, the effect of temperature will become ever
more important. This suggests clear directions for more future research.
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