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Abstract. The Quorum Percolation model has been designed in the context of neurobiology
to describe bursts of activity occurring in neuronal cultures from the point of view of statistical
physics rather than from a dynamical synchronization approach. It is based upon information
propagation on a directed graph with a threshold activation rule; this leads to a phase diagram
which exhibits a giant percolation cluster below some critical value mC of the excitability.
We describe the main characteristics of the original model and derive extensions according
to additional relevant biological features. Firstly, we investigate the effects of an excitability
variability on the phase diagram and show that the percolation transition can be destroyed
by a sufficient amount of such a disorder; we stress the weakly averaging character of the
order parameter and show that connectivity and excitability can be seen as two overlapping
aspects of the same reality. Secondly, we elaborate a discrete time stochastic model taking into
account the decay originating from ionic leakage through the membrane of neurons and synaptic
depression; we give evidence that the decay softens and shifts the transition, and conjecture than
decay destroys the transition in the thermodynamical limit. We were able to develop mean-field
theories associated with each of the two effects; we discuss the framework of their agreement with
Monte Carlo simulations. It turns out that the the critical point mC from which information
on the connectivity of the network can be inferred is affected by each of these additional effects.
Lastly, we show how dynamical simulations of bursts with an adaptive exponential integrate-
and-fire model can be interpreted in terms of Quorum Percolation. Moreover, the usefulness
of the percolation model including the set of sophistication we investigated can be extended
to many scientific fields involving information propagation, such as the spread of rumors in
sociology, ethology, ecology.
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1. Introduction
In vitro cultures of dissociated neurons have turned out to be a powerful tool in investigating
fundamental questions in several scientific fields. From a conceptual point of view, compelling
issues comprise the nature of biological computations, the mechanisms of information spreading
throughout networks, and the understanding of collective behaviors [1], as these questions could
bring new elements to the understanging of neuronal computation and to the field of artificial
intelligence. Moreover, neuronal cultures are suitable for pharmaceutical drugs experimentation
and have been useful in studying neurodegenerative diseases [2]. Lastly, populations of neurons
could be the basic units in designing computational devices involving real living cells [3].
Experimentally, such cultures can be obtained by seeding dissociated neurons extracted from



rodent embryos on a suitable substrate; axons and dendrites grow in such a way that neurons self-
organize after a few days into a quasi two-dimensional network [4]. The cells can be maintained
alive several weeks and display sustained electric activity. Let us recall that there are about
1011 neurons in the human brain, each of them being connected to 7 000 others on average
through synapses; hence, it is a very complex network where neurons are organized in localized
computational units connected according to a well defined hierarchical structure. However, in
vitro cultures establish very different connectivity patterns during their growth [3] since they are
characterized by a higher level of randomness. The neuronal cultures we are interested in hold
between 103 and 105 neurons with typical densities between 500 and 5 000 neurons per mm2,
each of them connected via a number of synapses falling between 20 and 200. These changes in
connectivity and scale which could at first glance appear as a loss from a neurobiologic point
of view are largely compensated by the benefits associated with in vitro experimentation. The
recent development of techniques such as micro-electrode arrays (MEA), [5] optogenetics and
calcium imaging [6, 7] enables the experimentalists to carry out quantitative measurements
inaccessible in vivo. Furthermore, more precise control over the system can now be attained:
physicochemical parameters such as extracellular ionic concentrations can be modified [8], drugs
can be injected [4], neurons can be electrically or optically excited. Microfabrication techniques
are now also used to structure the connectivity between sub-populations by constraining
mechanically the axon growth with obstacles or designed channels [3] in order to build in silico
models of brain structures or build neuronal devices designed for specific functions [9]. Both in
vitro and in vivo, neuronal rhythms are a widespread phenomenon observed at many temporal
and spatial scales. Synchronized periodic bursts of spiking activity emerge spontaneously in
cultures of dissociated neurons from rodent hippocampus and cortex [8, 10], depending on
their density and age. Furthermore, bursts can be triggered by initially activating a fraction
of neurons. Rather than describing collective behaviors observed in living neuronal networks
grown in vitro in terms of synchronization [11, 12], the Quorum Percolation model (QP) tackles
the issue of population wide activation from the point of view of statistical physics. The
Quorum Percolation model, derived from bootstrap percolation, has been specifically designed
to describe activity bursts observed in such cultures [13]. Under its original form, it is a discrete
time dynamics model of information propagation on a directed graph, built up according to a
simplification of the most relevant biological features: the neurons, located at the nodes of the
graph, are two state systems whose activation is governed by a threshold (Quorum) rule. A
burst is seen as a discontinuity in the activity of the network, interpreted as the occurrence of
a giant excited cluster. We further refined the model by introducing the following biological
relevant developments:

(i) Modulation of the neurons excitability. As a matter of fact, neuronal cultures exhibit some
variability in the neuron excitability; we study the modifications induced in the behavior of
a Quorum Percolation model by taking into account an uncorrelated Gaussian variability
of the neuronal thresholds.

(ii) Decay of the subthreshold neuron voltage. The decay accounts for ionic leakage through
the membrane of neurons, since they do not behave as perfect capacitors; we take it into
account in a Quorum Percolation with Decay (DQP) where we model the decay by a discrete
time disintegration process of the membrane potential of the neurons.

It should be pointed out that different kinds of noise occuring in neural networks are included
in these models under the form of randomness of the network, randomness of the initial state
and stochastic kinetics accounting from membrane fluctuations in the two refinements quoted
above.



2. Phase diagram and critical behavior of the original quorum percolation model
The networks we deal with includes N neurons, where each of them is a two-level system which
can be either active or at rest. A directed network is constructed by randomly choosing, for
each neuron i, k incoming links among the N − 1 other neurons according to an in-degree
probability distribution pk. Experimental results and their interpretation through the original
Quorum Percolation model suggest that the connectivity of mature in vitro cultures can be
approximated by a random oriented graph with Gaussian distribution of incoming links [10];
hence, in the following, we will restrict ourselves to such networks, where k denotes the mean
value of pk and σk its standard deviation. The construction of such networks does not require
information on the geometrical location of neurons in the physical space. Thus, we deal with
percolation on a random graph without taking in account any spatial metric. Starting at time
t = 0 from an initial state of the network where a given fraction f of randomly chosen neurons is
set active, information spreads through the network according to an excitability threshold rule.
A neuron i becomes active if a given number m (called quorum) of its k incoming neighbors
are active. The activation process of the network is described by a discrete-time dynamics with
a step ∆t during which each neuron integrates the signals sent by its incoming neighbors. A
discrete variable Vi(t) – accounting for the membrane potential – is assigned to each neuron i.
The transition from one time step to the next obeys the following rules:

(1) Every neuron i activated between t − ∆t and t sends at time t one signal to each of its
neighbors through its outgoing links; no further signals will be sent by such an activated
neuron at later times. Each sent signal has the same weight and is associated to an integer
increment equal to +1.

(2) The variable Vi(t) of each target neuron at rest is incremented by the sum of the inputs
received at time t.

(3) If Vi(t) is greater than or equal to the activation threshold m, the neuron i fires, which
means that it switches from the resting state (at time t) to the active state (at time t+∆t).

(4) Once a neuron has been activated, it remains in the active state until the end of the process.

The macroscopic activity state of a network at time t is the fraction of its active neurons.
Once a random network, and a random initial state have been drawn, the discrete-time dynamics
described above is deterministic, monotonically increasing, and leads to an equilibrium state of
the network characterized by a final fraction Φ of active neurons. Explicit simulations aim
at directly calculating the response Φ of a finite-size network of N neurons, from an initial
excitation parametrized by the fraction f of initially activated nodes. Given a set of parameters{
k, σk

}
, and m, a Monte-Carlo run consists of the following steps:

(i) A random directed network G is constructed according to the incoming links probability
distribution pk.

(ii) A fraction f of neurons is randomly activated.

(iii) The discrete time process described above goes on until the number of active neurons stops
increasing, i.e. when the stationary state has been reached.

The average value of Φ is then calculated over several runs. A typical phase diagram is
shown on Fig. 1 where two regimes can be distinguished as m varies, for fixed values of k and
σk. Such a phase diagram provides a good description of experiments carried out in the group of
E. Moses [4, 13]. Below some critical value mC , the final fraction of activated neurons presents
a discontinuity when we vary the control parameter f (the initial fraction of activated neurons),
whereas it remains continuous above mC . The sudden jump occurring at f∗ in the global activity
Φ is associated with a percolation transition on the network G, where a very small variation of
f results in the appearance of a giant cluster, whose normalized size g is given by the difference
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Figure 1. Phase diagram of the
Quorum Percolation model, for a
Gaussian ”in-connectivity” with k̄ =
50 and σk = 10. When the quorum
m is smaller than mC , a jump in the
fraction of active neurons Φ occurs
when increasing the fraction f of
initially activated neurons from zero.
The height 〈g〉 of the jump at the
discontinuity is the normalized size
of the percolation giant cluster.

between the lower and upper values of φ at the discontinuity. This phase diagram reminds
the one associated with the liquid-gas transition where the first order transition disappears at
some critical point. However the analogy cannot be taken further since percolation transitions
are not described by a Hamiltonian [14]; hence we cannot define a free energy and study its
behavior. In particular, even if a mean field theory of the quorum percolation indeed exhibits
an unstable branch, [4], the position of the jump is not given by some Maxwell construction but
by the maximum value of the lower branch. In other words, the physical criterion which leads
the resolution of the unstable branch is the fact that Φ is necessarily an increasing function of
f . Once pk is fixed, following the usual concepts of percolation on lattices [14], the normalized
mean cluster size 〈g〉 can be considered as an order parameter whose behavior in the vicinity of

mC is given by a power law: 〈g〉 ∼
(
mC−m
mC

)β
.

As a main result, it should be noticed that the critical behavior of 〈g〉 provides information
on the connectivity of the network [10, 13]. It is tricky to calculate the critical exponent β, since
the quorum percolation model is discrete; however we were able to derive an extension of the
QP model to continuous values of m with the help of a mean-field approach in good agreement
with Monte-Carlo simulations [15, 16]. A numerical resolution of the associated highly nonlinear
self-consistent equation led to a value very close to the classical mean-field exponent β = 1/2
when pk is Gaussian. This value, associated with a Gaussian distribution of incoming links, is in
agreement with experimental results. Furthermore, the critical value has been shown to depend
on k and σk as mC ≈ k − 1.3σk. Hence the position of the critical point provides quantitative
information on the mean value and width of the Gaussian connectivity distribution.

3. A quorum percolation model with quorum variability
Unlike the original QP model where the quorum takes the same value over the whole set of
neurons, we introduce disorder on the excitability by randomly setting each node’s quorum
to an integer value according to some probability distribution Pm – with no correlation to
other network properties. Thus, the Monte-Carlo algorithm described in section 2 includes an
additional stage just after the first one, where such a disorder on the quorums is implemented.
φ must be averaged over the three sets of associated configurations, that is a set of initial
configurations associated to f , a set of quorums related to Pm and a set of networks realizations
based on pk.



3.1. Mean-field theory
An alternative approach for calculating φ can be deduced from a mean-field treatment: the
probability for a neuron to be active at equilibrium corresponds to the probability to be either
active through initial stimulation or to be activated during the QP discrete time process; the
activation probability of a neuron – given m and k – can be approximated by a binomial process
depending upon φ. Since the activation of a neuron can occur only if at least m incoming links
are linked to active neighbors, such an activation probability reads

∑∞
l=m

(
k
l

)
Φl(1 − Φ)k−l. In

the end, we obtain the following self-consistent equation:

Φ− f
1− f

=

∞∑
m=1

Pm
∞∑
k=m

pk

k∑
l=m

(
k

l

)
Φl(1− Φ)k−l =

∞∑
k,m

Π(m, k)

∞∑
l=m

(
k

l

)
Φl(1− Φ)k−l (1)

where the right-hand term accounts for the total activation probability Pact(Φ) of a neuron of
the network. The solutions of the self-consistent equation (1) are given by the intersection points
of Pact(Φ) with the line of slope 1/(1 − f) passing through the point of coordinates (1, 1) in
the {Φ,Pactm (Φ)} plane. Assuming that Pm and pk are Gaussian probability distributions with
respective average values m and k and variances σm and σk, the self-consistent equation involves
a truncated bidimensional Gaussian probability distribution. As a first result, it turns out that
the qualitative behavior of the solutions for Φ is close to the one observed in the absence of
disorder. When numerically solving equation (1) in the physically meaningful range [0,1] of f ,
two regimes can be distinguished: For m smaller than a critical value mC now depending on
the additional parameter σm, there is a range f ∈]f0, f

∗[ where three different real values of Φ
satisfy (1). For m > mC , a single real value of f satisfies (1). Since the QP process requires Φ to
be an increasing function of f , the physical behavior of Φ resolves the existence of an unstable
branch below mC in this range by a discontinuity at f∗ associated with the appearance of the
giant cluster; the normalized size of this cluster is equal to the difference between the lower Φ−

and the upper Φ+ solutions of equation (1) at the border between the two regimes. Situations
showing the evolution of the jump in Φ for two different values of σm are displayed on Fig. 2.

Figure 2. Evolution of Pact(Φ) for k = 25,
σk = 3 and m = 15 and two different
values of σm. The open circles represent

the intersections of the curves Pact(Φ) with
the lines D of slopes 1/(1 − f) giving the
two solutions φ− and φ+ of equation (1)
associated with the percolation clusters.

3.2. Simulation results
Results reported on Fig. 3 provide a picture of the main conclusions that can be drawn out
from a large set of Monte Carlo simulations and numerical resolutions of equation (1).

(i) There is a good agreement between the mean-field and Monte Carlo approaches at least
within the range of physical parameters involved in the quantitative description of neuronal
cultures with Gaussian in-degree.



(ii) For a fixed value of m, increasing the variance σm shifts the position of the jump in Φ
towards lower values of f and reduces the size of the giant cluster (unless m is “too small”,
in which case a slight bump can appear in the variation of g with σm).

(iii) m being fixed, a large enough amount of disorder (σm) on the excitability can destroy the
percolation transition (σm = 32 on Fig. 3).

(iv) The position of the critical point mC depends not only on k and σk, but also on σm; as
long as the jump in φ survives, mC decreases when σm increases.

Figure 3. Evolution of the activity of
the network when increasing σm at a fixed
value of m obtained by explicit simulations
with N = 100 000 neurons (clouds of
points) and self-consistent equation (black
dots). Notice the agreement between the
two approaches and the vanishing of the
percolation transition when the disorder
width σm is large enough.

An interpretation of some of the preceding conclusions can be done by looking at the truncated
bidimensional Gaussian probability distribution Π(m, k) involved in the activation probability.
The initially excited nodes are uniformly drawn over the whole distribution, but the nodes liable
to be involved in the network activation must satisfy m ≤ k in order to be excitable; hence, they
lie under the bisecting line in the (m, k) plane. Two competitive effects arise when increasing σm
from zero: a fraction of nodes, associated with the part of Π(m, k) below m becomes more easily
excitable, while the other fraction becomes less easy or even – when they cross the bisecting line
– impossible to excite. The neurons below m are responsible for the shift of 〈f∗〉: the ignition
mechanism of the giant cluster needs a smaller fraction of initially excited nodes, but a larger
spread of activity throughout the network since (Φ− − 〈f∗〉) increases with σm as shown in the
example displayed Fig. 3. Moreover, as can be seen on Fig. 2, the sigmoids associated with the
activation probability Pact(Φ) become less steep when σm increases, leading to smaller values
of the slope of the line tangent to this curve at the point Φ−, hence to a decrease in f∗. Since
Monte Carlo simulations showed that we can rely on the mean field theory to describe a Quorum
Percolation with excitability disorder, a prolongation to non integer values of m with the help of
Beta functions enables to investigate properly the critical region [15]. As a main result a normal
form treatment of the prolonged self-consistent equation leads to the same power law behavior

as in the case without disorder, that is 〈g〉 ∝
(
mC(σm)−m
mC(σm)

)1/2
. Nevertheless it is worth noticing

that mC depends on the additional parameter σm; hence the relation mC ≈ k − 1.3σk cannot
be used to infer the values of the connectivity parameters.

3.3. Finite size analysis of the fluctuations
A detailed study of finite-size effects is of great interest from an experimental point of view, since
measurements are always carried out on finite neuronal populations. A finite-size scaling in the
vicinity of the critical point cannot be done from the standard point of view of percolation [14],
since it relies on a comparison between the linear size of the network and some correlation length,
quantities which do not make sense in the present case of percolation on a graph, where the



dimensionality of the system and the metric are not defined. Recalling that, in the presence of
quorum disorder, the physical quantities calculated from Monte Carlo simulations are averaged
over three sets of configurations, special attention must be paid to the study of sample to
sample fluctuations. Moreover, such fluctuations which are linked to self-averaging properties
can exhibit very unusual properties in the vicinity of a critical point [17, 18]. A large set of
parameters

{
k, σk,m, σm

}
has been investigated by means of intensive Monte Carlo simulations

for different sizes ranging from N = 103 to N = 2.5 × 106. As a main result we found that
the relative fluctuations decrease as power laws of the network sizes: 〈∆g〉 / 〈g〉 ∼ N−γ and
〈∆f∗〉 / 〈f∗〉 ∼ N−ζ and that fluctuations of the order parameter f are always larger than
the fluctuations of the jump positions; moreover, the fluctuations in g increase as m increases,
approaching the critical value mC as expected from a second order phase transition. On the
other hand, the fluctuations in g and f∗ increase as the threshold disorder σm is increased
(for a given value of m), the exponents associated with the power laws exhibit an universal
character, since no significant difference in these exponents can be brought out from the set of
simulations we carried out: ζ = 0.495(10) and γ = 0.29(15). Therefore, a finite-size analysis of
the fluctuations does not enable the direct detection of disorder on the quorum. Let us recall
that, in the case of networks with a linear size L in a D dimensional space, a quantity O is
said to be strongly self-averaging if [〈∆O〉 / 〈O〉]2 ∼ 1/N = L−D and weakly self-averaging if
[〈∆O〉 / 〈O〉]2 ∼ L−a where 0 < a < D [17]. Hence, it turns out that f∗ is practically strongly
self-averaging since [〈∆f∗〉 / 〈f∗〉]2 ∼ N−1 whereas the order parameter is weakly self-averaging
independently of the physical parameters, in particular the threshold disorder.

3.4. Subcritical behavior: disorder-independent fixed points
We investigated the effects of threshold disorder on the behavior of the network activity for values
of m̄ and σm such that no percolation occurs anymore. An example of the results obtained by
Monte Carlo simulations is shown on Fig. 4.

Figure 4. Disorder independent fixed
points in the supercritical region with
k̄ = 50, and σk = 10 for different values
of m indicated inside the figure and
each time four different values of σm
(increasing from red to blue): [11, 14]
when m = 34, [9, 12] when m = 36,
[7, 10] when m = 38, [3, 6], when m =
40, [2, 5], when m = 42. The dotted line
corresponds to Φ = f .

The most striking result is the emergence of disorder independent fixed points: the mean
activity of the network, for a given m and a given fFP is independent of the width of the
threshold distribution over a large range of σm. Furthermore, it turns out that the activity
ΦFP at the fixed point and fFP follow a universal law, since they line up along the straight
line ΦFP = 1

2 (1 + fFP ) independently of k and σk. Hence the fixed points occur right when

the activation probability is equal to 1
2 . This can be interpreted if we remember the evolution

of Pact(Φ) with σm: the evolution observed on Fig. 2 has the same profile when Eq. (1) has
a single solution. Below ΦFP , an increase in σm enhances the activity propagation, while it
has the opposite effect above. Therefore, the two competitive effects, arising between the more
easily and less easily excitable populations when σm is varied, balance exactly at the fixed point.



3.5. Discussion: connectivity, excitability and disorder
With regard to experiments carried out on neuronal networks, m was tuned by drugs [13] and k̄
and σk deduced from simulations fitting the experimental data in the critical region assuming an
uniform excitability. Since the critical value of the quorum depends on σm, the hypothesis that
no threshold disorder is present can lead to wrong estimations of the connectivity parameters
of the network. The results reported in section 3 show that the excitability and connectivity
distribution widths quantified by σk and σk are intricately connected. There is some kind of
equivalence between connectivity and excitability, which was noted by J. P. Eckmann et al. [19].
In fact, as already pointed out in the case of neuronal cultures, connectivity and excitability can
be seen as two overlapping aspects of the same reality: the addition of synaptic blockers – used
to increase the control parameter m – can also be interpreted as a weakening of the network
functional connectivity [4, 13]. This is locally reflected in the model: a node whose threshold
goes from m to m + 1 when introducing disorder needs a larger number of incoming links to
fire. Roughly speaking, what matters in describing the qualitative behavior of the model is the
ratio of excitability to connectivity m/k. However, the accessible physical quantities that can
be brought out from experiments involve averaging processes from which the detailed respective
roles of the connectivity driven by pk and the excitability driven by Pm are very difficult to
discriminate.

4. A quorum percolation model with decay
The membrane of biological neurons can be compared to a capacitor that supports electric
potential difference through ionic charge separation. Active neighbors will inject ionic currents
into this capacitor, changing the electric potential difference across the membrane until it
eventually passes a threshold value (associated with m in the framework of the QP model)
when the neuron fires. This membrane is not a perfect capacitor as it is continuously leaking
ions; hence, without new input, the membrane potential decays exponentially to its resting value
with a time constant τ . In the limit where the time interval between each received signals is much
larger that τ , they won’t add up at all. The state of a real neuron is thus not only determined
by the number of received signals, but also by their arrival times. We take into account the
decay by building an extended model, (called DQP for Decay Quorum Percolation) in which
each discrete accumulated signal can disintegrate independently with a probability d ∈ [0, 1] at
each step of the percolation process. Thus, the evolution of the neuronal activity is described
by a discrete time stochastic process with a step ∆t involving two competitive mechanisms: the
reception of new signals sent by activated neurons and the decay of the accumulated signals
with a characteristic time τ . The quorum is here assumed to be the same for all neurons.

A scheme of The Monte Carlo DQP process is provided on Fig. 5, and goes as follow:

(1) Every neuron j activated between t − ∆t and t sends at time t one signal to each of its
out-neighbors; no further signals will be sent by such an activated neuron at later times.
Each sent signal has the same weight and is associated to an integer increment equal to 1.

(2) The variable Vi(t) of each target neuron at rest is incremented by the sum of the number
of signals it has received at time t.

– If Vi(t) is greater than or equal to the activation threshold m, the neuron i switches
from the state at rest (at time t) to the state active (at time t+ ∆t).

– If Vi(t) is smaller than m, each integer element of this potential is submitted to a
Bernoulli trial of parameter d (with 0≤d≤1) and is disintegrated if the trial is positive;
the potential of the neuron at rest has decayed from its value Vi(t) to Vi(t+ ∆t).

(3) Once a neuron has been activated it remains in such a state until the end of the process.

A DQP Monte Carlo run follows the same algorithm as the one described in section 2, where the
discrete process of the item (3) is replaced by the process in item (2). Thus, it is as if the sum



Figure 5. Mechanism of DQP model (below); the QP model is recalled above. At time t, the
red neuron (left down) is activated; the orange ones (left up and down right have been activated
before). At t + td, the green one (up right) encounters a decay; its potential is decreased from
2 to 1. The network is updated at t + ∆t: the central neuron is activated. At t + ∆t + td the
upper right neuron encounters once more a decay, and its potential is decreased from 1 to 0; in
its updated state at t + 2∆t it receives a signal from the centered neuron, but it is not in the
same state as in the absence of decay (when ∆t << τ).

of accumulated signals decays on average exponentially with a time constant τ=−∆t/ln(1−d),
within a time step ∆t. If we normalize the time constant τ to the duration of an iteration in vitro,
that is, the minimal time interval necessary to transmit activity from a neuron to another inside
a culture, we can reckon the value of the decay parameter d. Taking into account the action
potential duration and propagation speed, the size of a typical culture and the synaptic delay,
we can estimate that ∆t lies between 1 and 10 ms and d between 0.1 and 0.01. Nevertheless,
from a mean-field point of view, we were able to establish a recursive relation enabling us to
fully describe the stochastic dynamics in the presence of decay [22]. The striking point is the
idea that everything goes on as if the decay changes the connectivity of the network all along
the process. At time t let us consider a neuron with k incoming neighbors, a potential Vi(t) = s
and x active neighbors (x ≥ s according the DQP rules); this neuron has undergone (x − s)
decrements due to the decay. Hence it is as if (x − s) among the k incoming links had been
erased. This remark enables to define a time dependent effective connectivity according to the
Quorum Percolation without decay; this neuron will behave as a neuron experiencing an effective
connectivity defined as keq = k − (x − s). Details on the derivation of this recursive relation
based on this equivalence can be found in [22].

Figure 6. Comparison of a network
calculated by Monte Carlo simulations
(lines) and numerical resolution of the
mean-field algorithm (dots); points of the
same color correspond to 10 different
equivalent Monte Carlo simulations. k =
50, σ = 10, d = 0.1



Fig. 6 displays typical results where the agreement between Monte Carlo simulations and the
mean-field approach can clearly be seen even when the size of the network is rather small. The
effect of the decay is shown on Fig. 7 where Monte Carlo simulations are gathered together.

As a main result, the decay softens the transition, reduces the apparent size of the
discontinuity, and shifts its position towards higher values of f .

Figure 7. Evolution of the activity of
a network when increasing the decay d
at m constant calculated by Monte Carlo
simulations. Note the decrease of the
apparent size of the discontinuity with d
and the vanishing of the transition if d is
large enough; mC should be equal to 0.58
without decay. k = 50, σ = 10, m=35.

The size of the discontinuity g as a function of m was previously used [13] to infer connectivity
in real neuronal networks; since decay is part of the physics of these networks, we wanted to
evaluate to what extent the decay parameter d was changing those results. The value of the step
ε between successive values of f is crucial in evaluating the size of the discontinuity; when dealing
with Monte Carlo simulations on networks with N neurons, the increment in f associated with
a single neuron imposes a lower bound 1/N for ε. For a given value of m, we define the apparent
size of the discontinuity gε(m) as the maximum value of the difference [Φ(f + ε) − Φ(f)] with
respect to f . In order to characterize properly the transition in the thermodynamical limit,
when N → ∞, numerical calculations of gε(m) are done in the framework of the mean-field
approach; hence the evolution of gε(m) as a function of ε can be studied with ε as small as wished,
approaching the real size of the discontinuity. Surprisingly, when d is non-zero, continuously
decreasing ε leads to a steady gradual reduction of gε(m): ∀m, lim

ε→0
gε(m) = 0. The convergence

is faster when the decay d is strong and the m/k ratio is high, but the phenomenon was observed
in every computationally accessible case, as long as d was non-zero. This strongly suggests that
gε(m) always converges towards 0 when d > 0 and m > 1.

Thus, the main result of our set of computations is the conjecture that the critical point
expected from the classical QP model in the thermodynamical limit vanishes in the framework
of the DQP model. It also reveals how the distinction between continuous and discontinuous
transitions depends both on the size of the network and the accuracy in the control of external
stimulation; consequently the decay, although being part of the networks dynamics, may remain
unnoticed. Lastly, a consequence of the shift in the apparent size of the discontinuity is that a
model which does not take decay into account leads to an underestimation of mC , introducing a
bias in the estimation of the network connectivity parameters, since the relation mC ≈ k−1.3σk
does not hold anymore when d 6= 0.

5. Percolation in dynamical situations of bursting cultures
The QP model was initially designed to study bursting activity in neuronal cultures; we will
discuss here how it can be applied, beyond the study of “forced” systems, to analyze spontaneous
activity in neuronal cultures. We simulated networks of oscillatory excitatory neurons using the
adaptive exponential integrate-and-fire model [23]. Each neuron is connected to others from a
Gaussian distribution of average 100 and standard deviation 5, and the spikes are transmitted
between neurons with a constant delay of 1 ms. Figure 8 shows the simulated activity, which



is composed of periodic bursts with a specific inner structure. A burst is indeed composed of
a succession of synchronous burst slices (SBS) which are the base units that we will describe,
using the introduced formalism, as several distinct percolation events. Let us first describe
and explain how a burst is initiated, develops and terminates. Burst initiation comes from
the intrinsic behavior of the neurons which are oscillators [8]: their membrane potential slowly
depolarizes under the influence of a persistent sodium current INa,p until a first spike is initiated.
After an initial synchronization of the population due to phase rest and positive feedback [24],
the first spikes of a burst occur concomitantly in a relatively short time period (e.g. 4510–
4512 ms) and involve a large fraction of the population. This initial SBS acts as the intrinsic
counterpart of the external excitation in the Quorum Percolation model since it is what activates
the first neurons of the following SBS (the [4514–4516] ms slice on the inset). Thus we obtain a
series of SBSs, each initiated by the input of the previous one. Moreover, the successive SBSs
get wider and more sparse because of adaptation mechanisms and fatigue, which increase the
quorum necessary for one neuron to activate. Since the effect of the SBS is spread over several
milliseconds, taking decay into account, we eventually reach a point where the cumulative effect
of the previous SBS in no longer sufficient for neurons to reach their increased quorum and the
burst terminates.

Figure 8. A: spike raster
of a 1000-neuron network
with Gaussian in-degree dis-
tribution N (100, 5), display-
ing periodic spiking behav-
ior. B: detailed dynamics of
5th burst (boxed), with the
successive SBSs. C: same
time-window as B but with
neurons ordered by increas-
ing in-degree; we can clearly
see the activity propagate
between groups with differ-
ent connectivity profiles.

The detailed structure of the burst becomes apparent if we sort the neurons based on their
in-degree. Figure 8 C represents the same time window as B and shows how strongly the
spiking times of the neurons correlate to their in-degree. Indeed, higher-degree nodes will reach
their quorum more easily, thus firing earlier than the rest of the network. This effect becomes
more significant as the average quorum increases; on the last SBS of C, we can clearly see the
sigmoidal shape as the percolation front propagates from the higher to the lower in-degree nodes.
Eventually, it should be stressed that, though the percolation formalism helps us understand
the inner structure of the burst, only the last SBSs can be described as a “pure” percolation
phenomenon. This can be understood from the 2nd SBS: because of the extension of the 1st SBS,
the resulting “initially activated fraction” is not clearly defined and it looks like two percolation
processes are interfering. We can see that the structure becomes clearer on the last SBSs where
the activity of the whole population occurs on a unique and longer timescale, in a decreasing
in-degree order, and follows the initial activation of the highest in-degree neurons.



6. Conclusion
We elaborated extensions to the original Quorum Percolation model by introducing two
additional neurobiological properties; we studied their effects on the activity of the networks. In
each case, we were able to construct a mean-field theory in good agreement with Monte Carlo
explicit simulations within a wide parameter range, which is specified in this paper. The central
idea that enabled us to derive these mean-field approaches is the mapping of the network onto
equivalent ones related to the original QP model, but exhibiting a different connectivity. A main
point is the close relation between excitability and connectivity, between decay and connectivity.
These two effects impact the position of the critical point in a manner that can remain unnoticed.
Hence deciphering the functional connectivity of the network using percolation methods is more
difficult than expected. Yet, the study of bursts with the help of a two dimensional dynamical
model gives evidence that the ideas of percolation are worth being kept in mind within such a
framework. At last, although the Quorum Percolation models we set out in this paper have been
designed to describe what triggers burst of activity in neuronal networks, they are also relevant
in other scientific fields (propagation of rumors, ecology, sociology. . . ) involving information
propagation throughout networks with a threshold rule.
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