

Contribution ID: 223

Type: Poster Presentation

Magnetic and strong correlation effect in CeT2Al8 (T=Fe,Co)

Wednesday, 13 July 2011 17:00 (2 hours)

We present specific heat, electrical resistivity, susceptibility, and thermopower measurements on the two novel intermetallic compounds CeFe₂Al₈ and CeCo₂Al₈. They form in an orthorhombic crystal structure of space group Pbam. In the unit cell representation Ce atom occupies only one lattice site,having Ce-Ce interatomic distance of 4.03Å. Magnetic susceptibility of CeFe₂Al₈ in the range of 1.9K - 400K yields an effective paramagnetic moment value of 3.89 μ _B together with prevailing antiferromagnetic interaction through Weiss temperature Θ =745.8K. The overall temperature dependence suggests valence instability in this compound and we model the appearance of broad peak around T=230K in the susceptibility to a T<sup>

2</sup>InT dependence attributed to an intermediate valent state. On the other hand for CeCo₂Al₈ the local moment state is depicted through an effective moment close to the free Ce³⁺ ion value. No long-range magnetic ordering is found in either of the two compounds down to 1.9K. The magnetic contribution of electrical resistivity on CeFe₂Al₈ and CeCo₂Al₈ compounds follows –InT behavior at intermediate temperatures which is typical of incoherent Kondo interactions between conduction electrons and magnetic Ce ions. A Fermi liquid behavior in resistivity measurement is observed in CeFe₂Al₈ compound towards the ground state,whereas clear deviations from standard Fermi liquid behavior are indicative of strong electronic correlation effects in CeCo₂Al₈. At 2K the electronic specific heat of this compound reaches γ =0.106J/mol-K²,and exhibits a –InT divergence towards T→0. We explain this behavior in terms of quantum criticality that stems from low-lying magnetic ordering effects. In studies of the thermoelectric power,a maximum is reached at T=140K(S=24µV/K) and T=30K(S=23µV/K) for CeFe₂Al₈ and CeCo₂Al₈ compounds respectively. We propose a description for this behavior in terms of formation of fine structure in the electronic density of states near the Fermi energy(E_F).

Level (Hons, MSc,
> PhD, other)?

PhD Physics

Consider for a student
 award (Yes / No)?

yes

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

yes

Primary author: Mr GHOSH, SARIT KUMAR (UNIVERSITY OF JOHANNESBURG)

Co-author: Prof. STRYDOM, Andre Michael (UNIVERSITY OF JOHANNESBURG)Presenter: Mr GHOSH, SARIT KUMAR (UNIVERSITY OF JOHANNESBURG)

Session Classification: Poster1

Track Classification: Track A - Condensed Matter Physics and Material Science