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Abstract. A theory of gravitation has previously been derived, based on a classical
Lagrangian, which satisfies the classical tests for a theory of gravitation. When the Wilson-
Sommerfeld quantisation rule is applied to the conservation equations of the theory, one finds
discrete values for the planetary distances from the sun. The values for all planets agree with
observation.

1. Introduction.
A series formula for predicting the distances of planets from the sun goes back to 1715 when
it was mentioned by David Gregory in his The Elements of Astronomy. The classical formula,
now known as the Bode-Titius formula, can be represented as

an = 4 + 3× 2n, n = −∞, 0, 1, 2 . . . . (1)

Earth: n = 1, a⊕ = 10.
In 1764 Charles Bonnet referred to such a formula in his Contemplation de la Nature, to

which Johann Daniel Titius added an unattributed comment, later removed to a footnote.
During 1772 Johann Elert Bode added the formula as a comment in the second edition of his

Anleitung zur Kenntniss des gestirnten Himmels, but credited it to Titius in later versions.
The discovery of Uranus in 1781 gave credibility to the formula, but the discovery of Pluto

in 1930, showing an error of 95.75%, seriously discredited the formula. The discovery of the
Kuiper belt in 1992 further discredited the formula. Pluto, reclassified as a ‘dwarf planet’
is now regarded as the largest known member of the Kuiper belt. The formula has become a
generic term for series formulas predicting planetary distances from the sun, but is now generally
regarded as a fortuitous statistical correspondence. Nevertheless, the recent discovery that some
of the exoplanets fit a comparable formula has renewed efforts to find a general formula for
predicting planetary distances. Noteworthy are the works of Agnese[1, 2, 3], Neto[4] , Giné[5],
Christianto[6, 7, 8], Ilyanok[9], Chechelnitsky[10], Nottale[11, 12, 13, 14] and the report by the
HARPS group[15]. However, none of the derivations of these groups proceed from an explicit
theory of gravitation.

A comprehensive survey of the Bode-Titius rule up to 1972 is given by Nieto.[16]
The present paper is based on a theory of gravitation defined by a Lagrangian,

L = −m0(c
2 + v2) exp(R/r), R =

2GM

c2
= Schwarzschild radius, (2)



where m0 is the mass of a test particle moving with speed v about a central body of mass M .
This Lagrangian leads to equations of motion, which satisfy all the classical tests for a theory

of gravitation. [17, 18]
The outline of this paper is as follows:

(i) Start with the above Lagrangian.

(ii) Derive the conservation equations for the energy E, total angular momentum L and the
z-component of the total angular momentum Lz.

(iii) Apply the Wilson-Sommerfeld quantization rule to the conserved quantities.

(iv) Obtain the quantised values of E, L and Lz.

(v) The average planetary distance ā from the sun is related to the total energy of the planet
by ā = R⊙/2(E − 1); R⊙ ∼ Schwarzschild radius.[19]

(vi) The quantized planetary distances are derived and plotted.

2. The conservation equations.
Applying Hamilton’s canonical equations to the Lagrangian gives

E = m0c
2 e

R/r

γ2
= total energy = constant, (3)

L = eR/rM, |M| = m0r
2dΨ

dt
, (4)

= total angular momentum = constant, (5)

Lz = eR/rm0r
2 sin2 θϕ̇, (6)

= z component of L = constant,

where γ = 1/
√

1− v2/c2 and the angle Ψ is measured in three dimensions.
The above conservation equations yield a general Kepler orbit:

dΨ

du
= (au2 + bu+ c)−1/2, u = 1/r, (7)

u = K(1 + ϵ cos kΨ) . (8)

• For an ellipse (ϵ < 1) the value of k ̸= 1 gives a precession of the ellipse, ∆ϕ = 3πR/ā (1−ϵ2).

• For a hyperbole (ϵ > 1) one gets a deflection 2R/r0, where r0 is the impact parameter of
the curve.

The above predictions agree with observation.

3. Applying the Wilson-Sommerfeld rule.
The Wilson-Sommerfeld rule is well-known from the Old Quantum Theory:∮

pidqi = niw, ni = 0, 1, 2 . . . , (9)

where w = an arbitrary constant, pi = ∂L/∂qi = conjugate momentum, qi = position coordinate
= r, θ, ϕ.

Applying the rule to the above conserved quantities gives

Lz = pϕ = nϕw̄ = mw̄, m = 0, 1, 2, . . . , (10)

L = pθ = [(nθ + nϕ)/2]w̄ = kw̄/2, k = (nθ + nϕ) = 0, 1, 2, . . . , (11)∮
prdr =

∮
2

[
e2R/r − EeR/r − k2w̄2

4r2

]1/2
dr = nrw. nr = 0, 1, 2, . . . , (12)

where w̄ = w/2π and we apply the convention m0 = c = 1.



4. Deriving quantised E to first order in R/r.
From (12):

nrw ≈ 2

∮ [
1 +

2R

r
− E

(
1 +

R

r

)
− L2

r2

]1/2
dr,

= 2

∮ [
R

r
(2− E) + (1− E)− L2

r2

] 1
2

dr,

≡ 2

∮ [
−A+

2B

r
− C

r2

] 1
2

dr, (13)

where A = E − 1, B = R(2−E)/2, C = L2 = k2w̄2/4.
Applying contour integration to (13):

nrw̄ = 2

[
−kw̄/2 +

R(2− E)

2
√
E − 1

]
,

∴ E = 2

(
1 +

n2w̄2

4R2

)
± 2

nw̄

2R

√
1 +

n2w̄2

4R2
,

= 2
(
1 + n2P 2

)
± 2nP

√
1 + n2P 2, (14)

where P = w̄/2R and n = k + nr = 0, 1, 2, . . .. P is unique for a particular central body.

5. Determination of planetary distances.
A planet’s average distance from the sun is given[19] by

ā = K/2(E − 1); K ∼ Schwarzschild radius. (15)

Substituting for E from (14) and taking the negative sign gives

an = K/2(E − 1) =
K/2

2 (1 + n2P 2)− 2nP
√
1 + n2P 2 − 1

. (16)

The constants K and P are unknowns to be determined from observation. K is a scale factor
and is adjusted to best fit the observed distances after a value for P has been found. P is
determined by assigning a distance an = 10 for n = 5. This value of n was found by trial and
error after finding that no planets exist at n = 1, 2. This is shown in Table 1 below.

A good fit is found for P = 200.00 and K = 0.000005. The results for n = 1 to 16 are given
in Table 1 below.

We note the following:

• Gaps appear at certain values of n. These gaps are also found by other authors,[1, 20, 21]
but a number of systems of exoplanets do have planets at those values.[3, 14, 15]

• For n > 15 the values of E, and consequently also of an, are the same to nine significant
digits. To determine distances for n > 15 we have to extrapolate to beyond n > 15.
Drawing up a difference table of the ratios of the predicted distances an shows that the
third differences are all zero to two decimals. This indicates that the an values can be
represented by a parabola, f(n) = a0 + a1n+ a2n

2.



Table 1. Energy and planetary distances

n planet E × 108 observed an f(n) % relative
difference

1 100000625 – 0.400
2 100000156 – 1.600
3 Mercury 100000069 3.87 3.600 6.99
4 Venus 100000039 7.23 6.399 11.49
5 Earth 100000025 10.00 10.007 0.07
6 Mars 100000017 15.20 14.393 5.31
7 Hungarias 100000013 20.99 19.523 6.31
8 Asteroid 100000010 27.70 25.811 7.71
9 Camilla 100000008 31.50 32.341 2.67
10 100000006 – 40.065
11 Jupiter 100000005 52.00 47.935 0.73
12 100000004 – 58.356
13 100000004 – 67.109
14 100000003 – 78.952
15 Saturn 100000003 95.40 95.870 0.49
16 100000003 – 95.870
21 Uranus 191.90 185.57 3.30
27 Neptune 301.00 310.28 3.08
31 Pluto 395.00 411.22 4.11

We find a parabolic fit for n = 1 to 15,

f(n) = 0.4447n2 − 0.5595n+ 1.2028, (17)

and apply this to n > 15. The extrapolated results for Uranus, Neptune and Pluto are
indicated in Table 1. The respective plots are indicated in Fig. 1
Applying analogies with the Bohr atom, Agnese[1] finds a parabolic fit, f(n) = 0.439n2.
Christianto,[21, p124] applying a Cantorian Superfluid Vortex model, obtains f(n) =
0.424n2. Values are adjusted for a5(earth) = 10. None of these derivations are explicitly
based on a theory of gravitation.

• The average percentage relative difference (APRD) for the first nine planets is 5.40%. The
value of E is extremely sensitive to changes in the value of P . The smallest APRD of
4.64% is found for P = 199.9900; any changes to the third decimal increases the APRD
considerably.
Venus presents an anomaly, which could be ascribed to effects during the early formation
of the solar system. Without Venus and for P = 199.99 the APRD changes to 3.36%.
The APRD for the last three planets is 3.50%.

• By analogy the results of Agnese, Christianto and Nottale also apply to the theory of this
paper, e.g. calculations of the distances of the satellites of the planets, of the exoplanets,
the planetary systems of pulsars and the rings of Saturn[1]. Agnese[1] also finds discrete
values for the angular momentum (‘spin’) of celestial bodies.



Figure 1. Planetary distances: (a) For 1 < n < 15. (b) Extrapolated for 1 < n < 30.

6. Conclusion
Our prediction of discrete values for planetary distances from the sun is the first to proceed
entirely from a theory of gravitation. The application to exoplanets and to the satellites of
the planets (in preparation) shows a general applicability of the constant w as a universal
gravitational constant, analogous to Planck’s constant in microphysics.
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[5] Giné J 2006 On the origin of the gravitational quantization: The Titius-Bode law,

doi:10.1016/j.chaos.2006.06.066
[6] Christianto V and Smarandache F On recent discovery of new planetoids in the solar system and quantization

of celestial system vixra.org/pdf/1003.0185v1.pdf
[7] Christianto V July 2004 Apeiron 11 82–98
[8] Christianto V 2006 Anales de la Fondation Louis de Broglie 31 31–43
[9] Ilyanok A and Timoshchenko I 2002 Quantization of masses in the solar system arXiv:astro-ph/0201057(2002)

[10] Chechelnitsky A Aug 22-26 2000 Hot points in Astrophysics arXiv:physics/0102036
[11] Nottale L 1997 Astronomy and Astrophysics 327 867–89
[12] Nottale L, Schumacher G and Gay J 1997 Astronomy and Astrophysics 322 1018–25
[13] Nottale L 2006 Theoretical prediction of the orbital elements of extra-solar planets

http://luth2.obspm.fr/ luthier/nottale/ukresult.htm
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