
On the Shape of Rotating Stars

P R Nicol1, F A M Frescura2 and C A Engelbrecht1

1Department of Physics, University of Johannesburg, P O Box 524, AUCKLAND PARK 2006,
South Africa.
2School of Physics, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa.

E-mail: Nicol3.Peter@gmail.com

Abstract. In this paper, I adapt a recent work by Zahn et al. on the shape of rapidly rotating
stars to explore the degree of oblateness for uniform and differential rotation of the star. I also
discuss the relation of these results with the classical Roche limit.

1. Introduction
The shape assumed by a rapidly rotating star, has been the subject of investigation for many
years. Recent advances in long baseline interferometry, now make it possible to measure the
degree of flattening of some nearby stars. Domiciano de Souza et al.[1] recently announced that
the Be star Achernar is oblate in shape with ratio of the major to minor axes of 1.56. This
unexpectedly high value raises challenging problems for current models. An early model that
predicts the shape of a star rotating at critical velocity is due to Roche. In this model the entire
mass of the star is treated as if it were concentrated at its centre. The maximum flattening ratio
predicted by this model is 1.5. Recently Zahn et al.[2] attempted to predict this measured value
for the flattening of Achernar by modifying the Roche model. In their model the mass is no
longer concentrated in the centre of the star but is now contained in an oblate spheroid. This
adds a quadrupolar term to the Roche theory. They illustrated the impact of inclusion of the
quadrupolar moment by considering a 7 Solar mass star in several different stages of evolution
and undergoing three forms of rotation: uniform, differential and shellular. They were able to
obtain flattening ratios of greater than 1.5.

In this paper we explore the effects of the inclusion of the quadrupolar moment in the simpler
case of a polytrope and examine the flattening ratio for different polytropic indices and for
angular velocities ranging from zero to critical. We calculate the quadrupolar moment of the
rotating polytrope by a linear perturbation method first described by Sweet [3], and speculate
on the inclusion of higher order moments.

2. Polytropes
A polytrope is a star in which the pressure is proportional to a power of the density[4],

P = Kργ
′

(1)



where K is a constant, and γ′ is called the polytropic power. The equation governing the
structure of a non-rotating polytrope is the Lane-Emden equation, given by
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where θ and ξ are dimensionless variables related to the density and the radius respectively. The
boundary conditions for equation (2) are θ = 1 and dθ/dξ = 0 at ξ = 0. The radius of the star
is given by
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[
(n+ 1)K

4πG
λ(1/n)−1

]1/2

ξ1 (3)

where ξ1 is the first zero of the solution to equation 2, and λ is the central density of the
polytrope. The Mass of the star is given by
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[
(n+ 1)K

4πG
λ(1/n)−1

]3/2

ξ2 dθ

dξ
(4)

evaluated at ξ = ξ1.

3. Quadrupolar moment
3.1. Flattening of the star
Consider a non-rotating star of massM and radiusR. The stellar surface can be taken to coincide
with a level surface of suitably chosen low pressure [2]. Since a polytrope is a barotropic system,
isobaric surfaces coincide with isopycnic surfaces, and also with level surfaces of the effective
gravitational potential. This potential, for a star of radius R rotating at constant angular
velocity Ω is given by

Φeff = −GMr

r
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where θ is the colatitude. To determine the value Φeff on the surface equipotential, note that at
the pole centrifugal force is zero and r = RP , so that at the surface Φeff = −GM/RP . At the
stellar equator, therefore, we have
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Equation (7) can be used to calculate the ratio of equatorial to polar radii for given angular
velocity. The critical angular velocity is defined to be that angular velocity at which the star
must rotate in order for the effective gravity at a point on its surface at its equator to be zero.
This gives,
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(8)



3.2. The Quadrupolar correction
In the Roche Model, it is assumed that the gravitational potential of the star is the same as
that which would be set up were its entire mass concentrated at its centre. This is a good
first approximation. However, rotation causes redistribution of the stellar mass making the star
oblate and causing the mass distribution to deviate from spherical symmetry. The gravitational
potential outside the star may, therefore, be expanded as a multipole series of the form

φ(r, θ) = −GM
r

[
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r

)l
JlPl(cos(θ))

]
(9)

where R0 is the radius of the spherically symmetric reference model, Jl is a dimensionless
constant that measures the degree of oblateness, Pl(cos θ) is the Legendre polynomial of degree
l. Because we have assumed symmetry about the equatorial plane, only the even Legendre
polynomials are required in the expansion.

3.3. First Order Perturbation of the Gravitational Potential
We use a generalised first order perturbation method, first described by Sweet [3], to derive
an expression for the distortion of the equipotential surfaces by rotation. The equations of
hydrostatic equilibrium in the rotating frame, assuming azimuthal symmetry, are given by

∂P ′

∂r
= ρ′

∂φ′

∂r
+ ρ′fr (10)

∂P ′

∂θ
= ρ′

∂φ′

∂θ
+ ρ′fθ (11)

where ρ′fr and ρ′fθ are the components of the centrifugal force, φ′ is Sweets gravitational
potential ( which is the negative of the potential ordinarily used ), P ′ is the hydrostatic pressure,
and ρ′ is the density of the material. Dashes are used here to denote values in the perturbed
star, while undashed quantities denote values in the unperturbed star: that is

P ′ = P + δP (12)

ρ′ = ρ+ δρ (13)

φ′ = φ+ δφ (14)

On eliminating P ′ from equations (11) one obtains, correct to the first order,
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where g is the local gravitational acceleration and χ = ∂φ′/∂θ. Using Poisson’s equation to
substitute for ∂ρ′/∂θ in equation (15)
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The form of the left hand side of equation (16) suggests that we expand χ in terms of spherical
functions. Expanding the centrifugal acceleration, and the gravitational potential χ in terms of
Legendre polynomials one obtains

fr = Ω2r sin2 θ =
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Now

al(r) = αlrΩ
2 (18)

bl(r) = βlrΩ
2 (19)

where αl and βl depend on l. Substituting equations (18) and (19) into equation (16), we have
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Equation (20) is known as the perturbed Poisson equation. To ensure regularity of the functions
cl at at the origin and at the surface of the star, the boundary conditions required for l ≥ 1 are
[5],

cl(0) = 0 (21)

(l + 1)cl(R) = −dcl
dr

(R) (22)

3.4. Re-scaled Perturbed Poisson Equation
To simplify integration of equation (20), we rescale it. Define x = r/R0, h(x) = Ω2(x)/Ω2

s and
φl = cl/Ω
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0. Then, using equations (18) and (19), equation (20) becomes
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The domain of integration is x = [0, 1]. One can now calculate the moments Jl from the values
of φl at the surface,
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3.5. Quadrupolar Moment
We are interested only in J2, the first correction to the gravitational potential. For l = 2, we
get α2 = −2/3 and β2 = 1/3. Equation (23) thus becomes
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and equation (24) yields
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3.6. Quadrupolar Correction to the Flattening of the Star
Inserting the quadrupolar correction into equation (7), and substituting expression (26) for J2,
we obtain
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4. Results
We solved equation (2) for various values of n, to obtain ρ, dρ/dx, M and R0. For the central
density, we used the value 1 × 1015 kg.m−3, and took the value of K to be 2.76 × 109 in the
appropriate units. We then used these quantities to solve the perturbed Poisson equation (25)
and thus calculate the quadrupolar moment of the associated perturbed gravitational potential.
We used the rotation profile given by

h(x) =
1 + a

1 + ax2
(28)

The value a = 0, corresponds to solid body rotation, while non zero values yield differential
rotation. We calculated the cases corresponding to values a = 0, 1, 2, 3, 4. Figure 1 shows a plot
of the flattening ratio as a function of Ω/Ωc for a polytrope with index n = 1. The lowest curve
on the figure, corresponds to a = 0, the next one up corresponds to a = 1 and so on. This
is the general shape of the curves for different differential rotation profiles. Figure 2 shows an
enlargement of the region for the range 0.8 ≤ Ω/Ωc ≤ 1, where the flattening ratio reaches its
largest values. The panels in figure 2, represent respectively polytropes of indices n = 1, 2, 3, 4.
As can be seen from the plots in figure 2, the separation of the curves for increasing a decreases
with increasing index n. Note also that greatest degree of flattening occurs for the lowest
polytropic index. This can be attributed to the fact that the polytropes of lower index are less
centrally condensed.

Figure 1. Flattening of polytrope with index n=1.



Figure 2. Flattening of polytropes with indices from n=1 to n=4, from left to right, top to
bottom.
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