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Abstract. The angular-momentum-projected and parity-projected antisymmetrized molec-
ular dynamics is used to analyse the charge and magnetic form factors of the three-nucleon
systems. Non-relativistic nuclear charge and current operators with relativistic corrections are
employed. The Hamiltonian of the nuclear systems is described with a semi-realistic nucleon-
nucleon potential. The results obtained are compared with some experimental data. It is found
that the theoretical model describes experimental data very well at low momentum transfer.

1. Introduction

Charge and magnetic form factors are often used to test model wave functions for systems. In
such tests the question of simultaneous accurate description of the form factors and the static
properties of the systems is raised. The structure of few-nucleon systems and light nuclei is
widely and continuously investigated, both theoretically and experimentally. Over the years a
variety of theoretical methods have been developed and refined in the study of electromagnetic
processes in nuclei. Very accurate wave functions for bound and scattering states in few-nucleon
systems can now be constructed using realistic Hamiltonian for the systems. A demonstration of
the level of accuracy in describing ground state properties of the four-nucleon system by seven
different state-of-the-art methods is shown in reference [1]. These methods are continuously
developing. This work focuses on the use of one of the microscopic simulation methods, the
antisymmetrized molecular dynamics (AMD) in the study of electromagnetic form factors of
three-nucleon systems.

The AMD approach was developed [2] from the Time-Dependent Cluster Model [3] for the
study of fermionic systems. This approach combines Fermi-Dirac statistics with elementary
quantum mechanics to treat the motion of particles in a system [4]. However, the model is not
fully quantum mechanical and does not assume a shell structure for the system. The AMD
approach was used to study the dynamics of heavy-ion collisions [5] and elastic proton-nucleus
scattering [6]. Clustering in nuclei as well as angular distributions of scattered protons in
proton-nucleus scattering can be well explained with the AMD model [6]. Improved AMD wave
functions are shown to give good predictions of few-body systems [7, 8]. In this work the parity
projected and angular momentum projected AMD approach [9] is employed.

In the next Section 2 the general formalism of the AMD approach is summarised. In
this section the construction of the wave function, the equations of motion of the variable
parameters and the variational technique used are briefly outlined. Results and illustrations of



the application of AMD to three-nucleon and four-nucleon systems are presented in Section 3
and in Section 4 for the charge and magnetic form factors, respectively. Conclusions drawn are
given in Section 5.

2. The AMD Formalism

The antisymmetrised molecular dynamics (AMD) wave function describing a nuclear system of
A nucleons is constructed as a Slater determinant

ΨAMD(~S) =
1√
A!

det[φj(α,~si), χj(~σi), ξj(~τi) ] (1)

where φ, χ and ξ are, respectively, the spatial, spin and isospin components of the single-particle
wave functions. The spatial components are non-orthogonal Gaussian with complex variational
parameters ~si. The width parameter α is taken as real and free. A wave function with definite
parity(π) and total angular momentum (J) with the angular momentum projection (M) is
constructed from the AMD wave function as

ΨJπ
MK(~S) =

1

2
P J
MK(Ω) [ 1± P π ] ΨAMD(~S) (2)

where P J
MK(Ω) is the angular momentum projection operator, P π the parity projection operator

and ~S ≡ {~s1, ~s2, ~s3, . . . , ~sA}. The angular momentum projection operator is defined by [10]

P J
MK(Ω) =

2J + 1

8π2

∫

dΩDJ∗
MK(Ω) R̂(Ω) (3)

where DJ
MK(Ω) is the Wigner D-function, R̂(Ω) the rotation operator and Ω ≡ {α, β, γ} the

Euler rotation angles.
The single nucleon wave functions are given by

ψi(~rj) =

(

2α

π

)2/4

exp

[

−α
(

~rj −
~si(t)√
α

)2

+
1

2
~s2i (t)

]

⊗ χi ⊗ ξi (4)

where χi ⊗ ξi are the fixed spin-isospin states of the i-th nucleon. These states are compactly
expressed in the form κi = {N ↑ or N ↓ } for nucleon with spin-up or spin-down. The Gaussian
width parameter α is a real constant and the variational parameter ~s(t) is complex. The time-
dependent variational principle [5]

δ

∫ t2

t1

〈Ψ(~S) | ih̄ ∂
∂ t −H |Ψ(~S) 〉

〈Ψ(~S) |Ψ(~S) 〉
dt = 0 (5)

with the constraints
δΨ(t1) = δΨ(t2) = δΨ∗(t1) = δΨ∗(t2) = 0 . (6)

is used to determine the dynamical equations for the variational parameters. The resulting
equations can be transformed into the form [11]

d~si
dt

= −µ ∂E
J±
0 (~S, ~S∗)

∂~s∗i
,

d~s∗i
dt

= −µ ∂E
J±
0 (~S, ~S∗)

∂~si
(7)

where µ is an arbitrary positive real constant and

EJ±
0 (~S, ~S∗) =

〈ΨJ±
MK(~S)|H |ΨJ±

MK(~S) 〉
〈ΨJ±

MK(~S)|ΨJ±
MK(~S) 〉

. (8)



the variational energy of the nucleus. Solving these equations minimizes E0 and determines the
variational parameters. The Hamiltonian of the system is given by

H = −
∑

i

h̄2

2Mi
∇2

i +
1

2

∑

i 6=j

[

VNN (~rij) + VC(~rij)
]

(9)

where Mi is the mass of nucleon i, VNN the two-body nuclear potential and VC the Coulomb
potential. In this work the AV4 NN potential with the VC1(r) Coulomb component is used [12].
The evaluation of the components of the energy expectation values is explained in Ref. [13].

3. Charge Form Factor

In elastic electron-nucleus scattering the charge distribution in the nucleus is inferred from the
induced electric transitions in the nucleus. The charge form factor is determined as expectation
values of the nuclear charge operator. The AMD nuclear charge form factor is given by

Z Fch(~q) =
〈ΨJi±

MK | ρ(~q) |ΨJi±
MK 〉

〈ΨJi±
MK |ΨJi±

MK 〉
(10)

where Z is the charge on and ρ(~q) the charge operator of the nucleus with ~q as the momentum
transferred to the nucleus by the electron. In the plane wave impulse approximation (PWIA)
the nuclear charge operator is formed by the superposition of the individual nucleon charge
operators. The nuclear charge operator is given by [13]

ρ(~q) =
A
∑

k=1

[

q

Q
GN

Ek(Q
2)− 2GN

Mk(Q
2)−GN

Ek(Q
2)

4M2
N

√
1 + τ

i~σk · ~q × ~pk

]

exp( i ~q · ~rk ) (11)

where MN is the proton mass, τ = Q2/4M2
N , Q2 = q2 − ω2, ω =

√

q2 +M2
N − MN and

GN
E (GN

M ) the nucleon Sachs electric (magnetic) form factor. For the Sachs form factors the
phenomenological parametrisation derived in reference [14] is adopted. The transitions are
between states of definite angular momentum. The general multipole analysis of nuclear charge
form factors is given by [15]

Fch(~q) =
√
4π

≤ 2J
∑

L=0

〈JJL0|JJ〉F ρ
L(q)Y

∗
L0(q̂) (12)

where Y ∗
LM(q̂) are the spherical harmonics, L the nuclear orbital angular momentum and

〈JJL0|JJ〉 Clebsch-Gordan coefficients. The summation is over even values of L only. For
three-nucleon systems Ji = 1

2
. The intrinsic charge form factor is obtained by dividing the

calculated charge form factor by the contributions of the center-of-mass [13].
The ground-state charge form factors of the 3H and 3He nuclei are calculated in the impulse

approximation. In this approximation the nucleons inside the target nucleus are assumed not
to interact with one another during the nuclear interaction with the electron [16]. Then the
electron interacts with independent nucleons inside the nucleus. The results obtained for the
calculated charge form factors are displayed in Figure. 1 and Figure. 2. The presented charge
form factors are normalised such that Fch(0) = 1. In these figures the results of the theoretical
predictions of the AMD formalism are compared with the IA theoretical results presented in
reference [17]. The calculations of [17] use the Faddeev approach with the SdTNN potential [18]
including the three-body force and employs standard parametrisation of nucleon electromagnetic
form factors. For low momentum transfers, up to the first diffraction minimum, predictions of
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Figure 1. The AMD charge form factor
of the 3H nucleus compared with the IA
results of reference [17].
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Figure 2. The AMD charge form factor
of the 3He nucleus compared with the IA
results of reference [17].

the AMD are similar to those of reference [17]. For momentum transfers greater than the first
diffraction minimum the AMD results are lower than those of reference [17]. The AMD model
predicts values of the first diffraction minimum for the 3H and 3He nuclei to be at 3.82 fm−1.
These predictions are consistent with the predictions of other theoretical models using standard
nucleon-nucleon potentials [19]. However, it is known that the overestimation of the position of
the diffraction minimum indicates the underestimation of the nuclear charge radius.

4. Magnetic Form Factors

Magnetisation density distribution in nuclei are determined from magnetic transitions involving
transverse nuclear currents. The transition amplitude, the nuclear magnetic form factor, is
calculated as

µA Fmag(~q) =
〈ΨJ±

MfKf
| ~µ(~q) |ΨJ±

MiKi
〉

√

N J±
MfKf

N J±
MiKi

(13)

where ~µ(~q) is the magnetisation density operator and µA the nuclear magnetic dipole moment.
Following reference [20] the PWIA transverse nuclear magnetisation density operator is given
by

~µ(~q) =
Q

2Mp q

A
∑

k=1

[

GN
Ek(Q

2) ~ℓk − iGN
Mk(Q

2) ~q × ~σ
]

exp( i ~q · ~rk ) (14)

where ~ℓN is the nucleon orbital angular momentum. The multipole expansion of nuclear magnetic
form factor has the form [15]

Fmag(~q) =

√
4π

〈JJ10|JJ〉
≤ 2J
∑

L=0

〈JJL0|JJ〉
[

Fµ
LL−1

(q)Y0∗
LL−1(q̂) + Fµ

LL+1
(q)Y0∗

LL+1(q̂)
]

(15)

where the summation is over odd values of L,

Y0∗
LM (q̂) =

∑

m

〈Mm1−m|L0〉YMm(q̂) êm . (16)



are the vector spherical harmonics and êm spherical unit vectors. The general form of the nuclear
magnetic transition multipole operator can be derived as in reference [21] for a given nuclear
current operator. The intrinsic magnetic form factor of the systems is obtained by factoring-out
the contributions of the center-of-mass from equation 15.
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Figure 3. The AMD magnetic form factor
of the 3H nucleus compared with the IA
results of reference [17].
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Figure 4. The AMD magnetic form factor
of the 3He nucleus compared with the IA
results of reference [17].

The results obtained for the calculated magnetic form factors of the three-nucleon systems
are displayed in Figure. 3 and Figure. 4. In these figures the AMD form factors are compared
with the theoretical IA results of reference [17]. The calculated form factors are normalised such
that Fmag(0) = 1. As can be seen the AMD form factors are greater in magnitude than those
of reference [17] at low momentum transfer, for both systems. At momentum transfer greater
than the diffraction minimum the AMD results are less than those of reference [17]. As a result
the AMD predicts a larger value for the diffraction minimum.

5. Concluding Remarks

Electromagnetic form factors of three-nucleon and four-nucleon systems were investigated using
electron-nucleus scattering. The properties were determined in the non-relativistic formalism
within the impulse approximation. Conventional forms of the one-body nuclear charge and
current operators were employed. Nucleon electromagnetic form factors parametrised using
recent experimental nucleon-nucleon scattering data were used. Except for the incomplete
treatment of many-body current effects, this approach is realistic. Firstly, the charge monopole
and the magnetic dipole transitions in the nuclei were determined from elastic electron scattering.
These transitions are used to extract information about ground-state charge and magnetisation
distributions in the nuclei. The obtained results were compared with predictions obtained using
other theoretical methods and with selected experimental data. The AMD approach generates
PWIA charge form factors for few-nucleon systems similar to those predicted by other theoretical
models. The calculated charge form factors for the nuclei are very close to the experimental
form factors for values of momentum transfers less than the first diffraction minimum. For
values of momentum transfers greater than the diffraction minimum the theoretical predictions
underestimate the experimental data and overestimate the position of the diffraction minimum.
In the case of the magnetic form factors the theoretical results generally underestimate the
experimental data as well as the position diffraction minimum. The calculated AMD ground-
state charge and magnetisation distribution in the nuclei are consistent with the results obtained



with other conventional theoretical methods. The deviations of the theoretical results from
experimental data can be explained by the limitations of the electromagnetic operators used.
Therefore the AMD wave functions can describe nuclear states as accurately as most conventional
theoretical methods.
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