

Contribution ID: 203

Type: Poster Presentation

Synthesis and Characterization of CaAl₂0₄:Tb³⁺ Phosphor using Solution – Combustion Method.

Wednesday, 13 July 2011 17:00 (2 hours)

Presently Ca Al_xO_y:Tb green phosphors are mainly prepared by the solid-state process which is more feasible than others in terms of operation and large-scale production. However, the raw materials are usually not mixed well and very high temperature is needed to synthesize the final powder using the solid-state process. In order to solve these problems, Terbium ion doped calcium aluminate (Ca Al_xO_y:Tb<sup>

3+</sup> green phosphors were obtained at low temperatures (500°C) by the solution - combustion of corresponding metal nitrate–urea solution mixtures, over a time of 5 min. The morphology and structural properties were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), SEM shows that the particles are irregular shape and are aggregated and the structural analysis revealed the presence of monoclinic CaAl₄O₇ at optimized fuel to nitrate molar ratio. The characteristic luminescence properties were investigated using emission spectra. It was found that the oxidizer: fuel molar ratios showed greatly influence not only on morphology, but also on their PL spectra. The photoluminescence (PL) excitation spectrum was characterized by a dominant broad band centered on 239 nm. Intense emission bands were observed at 489 nm, 544 nm, 587 nm and 622 nm originating from the ⁵ D₄ to ⁷ F_J transition and other bands were observed at 379, 417 and 438nm originating from ⁵ D₃ to ⁷ F_J transition, which correspond to the crystal field splitting components of the Tb³⁺ on luminescence lifetimes and intensities were also investigated. The samples with Tb concentration of 1.0 mole

Level (Hons, MSc,
 PhD, other)?

Msc

Consider for a student
 award (Yes / No)?

Yes

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Primary author: Ms FOKA, Kewele Emily (University of the Fee Stae)

Co-authors: Prof. DEJENE, Francis (University of the Free State); Prof. SWART, Hendrik (University of the Free State)

Presenter: Ms FOKA, Kewele Emily (University of the Fee Stae)

Session Classification: Poster1

Track Classification: Track A - Condensed Matter Physics and Material Science