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Abstract. The magnetocaloric effect (MCE) may become strongly enhanced in systems
exhibiting a second order magnetic phase transition due to critical behaviour of the order
parameter in close proximity of the transition region. Recently it has been shown that, analogous
to the order parameter, the MCE shows scaling behaviour with the applied magnetic field
along the critical isotherm. It has been argued that this behaviour should be indicative of
the universality class of the system. Using ferromagnetic CeAuGe as a model system with
high crystallographic and atomic order, we have determined the MCE from specific heat
measurements in various applied fields. In the low field limit we observe scaling behaviour
reminiscent of a mean field ferromagnet. However, in progressively larger applied fields the
MCE in CeAuGe significantly exceeds that of the mean field reference system, indicating that
the refrigeration capacity of CeAuGe is significantly larger than that of a model mean field
ferromagnet. Our results are contextualized in terms of a more general amenability of local-
moment magnetic compositions as model systems for magnetic refrigeration.

1. Introduction

The magnetocaloric effect describes the reversible cooling or heating of a material under the
action of a changing applied magnetic field. It is customary to express the magnetocaloric
effect in terms of two parameters, each denoting a specific magnetic field induced trajectory in
phase space. These are the isothermal entropy change ∆S(T )∆B and the adiabatic (isentropic)
temperature change ∆T∆B(Tf ). These parameters are defined in analogy with the well known
Carnot gas-compression refrigeration cycle. Regarding the magnetocaloric effect this cycle
consists of an initial isothermal magnetisation obtained by increasing the magnetic induction
B from Bi to Bf which causes the entropy of the system to change by ∆S(T )∆B (for the sake
of simplicity we assume that the applied field H can be related to B through B = µ0H). The
second step is an isentropic demagnetisation (decreasing B from Bi to Bf ) which induces an
adiabatic temperature change ∆T∆B(Tf ) in the sample.

The simplest magnetic system exhibiting this effect is an ideal spin-1/2 paramagnet. In
the limit where there are no interactions between the spins in the system and all entropy
contributions other than the magnetic configurational entropy of the system are negligible,
adiabatic demagnetisation cools the system down to absolute zero. In any real system however
the former condition can never be met and it is found that magnetic interactions limit the lowest
temperatures attainable via the MCE [1].

While interactions among magnetic moments generally act to the detriment of the MCE
in paramagnetic systems they are responsible for a significant MCE in systems where such
interactions are strong enough to cause a phase transition between the paramagnetic and a



magnetically ordered state. In systems where the transition is of second order the behaviour
of a host of physical properties close to the phase transition temperature Tc is determined
by the growth of a characteristic length scale over which coherent fluctuations in the order
parameter occur [2]. In zero applied magnetic field this critical behaviour is manifested by
the dependence of physical quantities on a reduced temperature ǫ. In the critical region the
temperature dependence of physical quantities usually takes on a form dominated by terms of
order ǫp. The value of p is characteristic of the universality class of the system.

For magnetic systems the magnetisation M is a natural choice for the order parameter. The
critical behaviour of M with temperature in zero applied field as the critical phase transition
temperature Tc is approached takes on the form
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The critical behaviour of M is suggestive of a significant magnetocaloric effect [3] as is
discussed next. The isothermal entropy change in a system as it is magnetised by increasing B
from Bi to Bf follows from the well-known Maxwell-relations as
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Due to the critical behaviour of M the integrand diverges as T → Tc and B → 0 (see
Eq.1). Therefore large ∆S∆B values are expected in the vicinity of T = Tc due to the critical
contribution to the integrand. The critical behaviour of the MCE has been a topic of recent
theoretical interest. It is known that the maximum value of ∆S(T )∆B (hereafter referred to as
∆Smax) occurs at a temperature T ′ close to Tc if magnetisation proceeds from B = 0 to B = Bf

[3]. In the limit where Bf → 0 the temperature T ′ approaches Tc. It could be shown by Franco
et al. (see Ref. [4]) that ∆Smax(Bf ) scales with the applied field as |∆Smax(Bf )| ∼ Bn

f and
that n is indicative of the universality class of the system.

In this work we turn our attention to the MCE in CeAuGe. It has been noted that lanthanide
systems are prime candidates for commercial applications of the MCE due to the large localised
magnetic moments associated with the rare earth ions in these compounds. Within this context
it may seem counter intuitive to study the MCE in cerium-based intermetallic compounds as
the Ce3+ free-ion moment (J = 5/2) is relatively small when compared to other rare earth ions
such as Gd3+ (J = 7/2). Furthermore in a host of crystalline systems (as is the case with
CeAuGe, see Ref.[5]) the degenerate ground state multiplet associated with the free tri-positive
Cerium ion is split by the action of an anisotropic crystalline electric field (CEF). In CeAuGe
the CEF causes the magnetic ground state to be a doublet (corresponding to J = 1/2). The
reason for studying the MCE in CeAuGe (and other Cerium systems) however can be seen when
the mechanism by which magnetic order is established is investigated.

Magnetic order in lanthanide systems usually occurs due to an indirect exchange mechanism,
whereby the magnetic moments localised at lanthanide crystallographic sites polarise the
itinerant electrons in the system thereby producing an indirect interaction between neighbouring
localised moments. Recent theoretical investigations into such systems has shown that the
refrigeration capacity in these systems are enhanced due to the polarisation of conduction
electrons [6, 7]. The local interaction between the 4f -electron of the Ce3+-ion and the conduction
electrons in various Ce-based intermetallic systems is strong enough to produce an extensive
range of correlated electron phenomena [8]. Given the possibility that such systems may
show a significant enhancement in refrigeration capacity, the MCE in Ce-based systems is of
conceivable interest. However, a systematic study into the magnetocaloric properties of Ce-
based intermetallics is still generally lacking. Here we present a first investigation into the MCE



of CeAuGe, focussing on the critical behaviour of the MCE as well as the refrigeration capacity
of the system.

2. Experimental Procedure

The synthesis and characterisation of polycrystalline CeAuGe is discussed in Refs.[5] and [9].
The MCE is calculated indirectly from the measured specific heat reported in the latter two
references. The calculation follows the method given in Ref.[10]. The isofield entropy SB(T ) is
calculated from the specific heat Cp,B(T ) measured in constant pressure and applied field as

SB(T ) =

∫ T

0

Cp,B(T )

T
dT. (3)

Eq.3 introduces two significant errors into the results that follow. The first is the numerical
error associated with calculating the integral from a discreet set of data points. The second is that
the experimental temperature range does not extend down to absolute zero. This implies that

the contribution from
∫ T0

0
Cp,B(T )

T
dT (where T0 is the lowest available experimental temperature)

needs to be approximated through extrapolation. Both these errors are taken into account in
the sections below.

Knowing SB(T ) for a set of applied fields allows the isothermal entropy change ∆S∆B(T )
associated with ∆B = Bf − Bi to be calculated as

∆S∆B(T ) = SBf
(T ) − SBi

(T ) (4)

In this work Bi = 0 is used throughout in the calculation of the ∆S∆B(T ) data reported in
the next section. The adiabatic temperature change follows from

∆T∆B(Tf ) = Tf − Ti (5)

where Ti and Tf have values satisfying the isentropic condition SBi
(Ti) = SBf

(Tf ). With
regards to ∆T∆B(Tf ) it will be assumed that Bf = 0 throughout.

3. Results and Discussion

The various isofield entropy curves are calculated from the specific heat of CeAuGe as reported
in Refs.[5] and [9]. Shown in figure 1 are the isofield entropy in zero applied field, 1 T and 9 T.
The inset shows the magnetic configurational entropy calculated by considering the magnetic
contribution to the specific heat. The latter is calculated by using the LaAuGe specific heat
reported in [9] as a non-magnetic reference. The saturation value of the magnetic configurational
entropy is close to R ln 2 = 5.76 J.mol−1.K−1as is expected for a magnetic doublet. The
calculation of the magnetic configurational entropy confirms the correct treatment of the errors
inherent to Eq. 3 as noted in the previous section.

∆S∆B(T ) and ∆T∆B(Tf ) calculated from SB(T ) are shown in figures 2 and 3. Also shown is
the magnetocaloric effect of an ideal J = 1/2 mean field ferromagnet with the same transition
temperature as CeAuGe. In calculating the MCE of this model system the formalism developed
in Ref.[11] was used. A comparison between the MCE in CeAuGe and the ideal mean field
ferromagnetic system shows that the characteristic Caret-like shape (see for example Ref. [3])
of ∆S∆B(T ) and ∆T∆B(Tf ) is much broader for CeAuGe than for the mean field ferromagnetic
system. As is discussed below this is an indication of the enhanced refrigeration capacity of
CeAuGe. For ∆B = 1 T the extremas in both ∆S∆B(T ) and ∆T∆B(Tf ) for CeAuGe are close
to the corresponding extremas of the mean field system. This is the first indication that the
critical behaviour of CeAuGe closely resembles that of a mean field ferromagnet in small applied
fields.



Figure 1. The isofield entropy (filled circles)
for CeAuGe calculated from experimental
specific heat data in zero field, 1 T and 9
T. Upper and lower bounds are indicated by
dashed lines. Inset: Magnetic configurational
entropy of the Ce3+ 4f -electrons in CeAuGe
in zero applied field.

Figure 2. The isothermal entropy change
∆S(T )∆B (open circles) calculated from the
isofield entropy curves in figure 1 for ∆B = 1
T and 9 T. Dotted lines show the uncertainty
in the calculation. Solid lines show the
isothermal entropy change calculated for the
corresponding model mean field system.

In order to investigate the critical behaviour further ∆Smax(Bf ) for both CeAuGe and the
model mean field system are shown in figure 4. ∆Smax(Bf ) for the mean field system lies within
the margins of error (calculated for CeAuGe) up to ∆B = 4T. For larger fields ∆Smax(Bf ) in
CeAuGe clearly exceeds that of the mean field system. The behaviour of ∆Smax(Bf ) shown
here suggests that the critical behaviour of polycrystalline CeAuGe closely resembles that of a
mean field ferromagnetic system.

The refrigeration capacity of CeAuGe is calculated from figure 2 as

q(Bf ) =

∫

∞

0
∆S∆B(T )dT (6)

and shown in figure 4. The refrigeration capacity of the mean field system is also shown. We
find that the refrigeration capacity of CeAuGe exceeds that of the mean field system by ∼ 40%
in all but the lowest applied fields.

4. Conclusion

The MCE in polycrystalline CeAuGe was calculated indirectly from measured specific heat data
in various applied fields. It could be shown that the critical behaviour of the MCE in small
applied fields is close to the critical behaviour expected in a mean field ferromagnetic system.
Importantly, the refrigeration capacity of CeAuGe is shown to be significantly enhanced above
that of the ideal mean field system, highlighting the role of local-moment magnetic compositions
as model systems for magnetic refrigeration.
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Figure 3. The adiabatic temperature
change ∆T (Tf )∆B calculated from the isofield
entropy curves in figure 1 for ∆B = 1 T
and 9 T (open circles). Dotted lines show
the uncertainty in the calculation. Solid
lines show the adiabatic temperature change
calculated for the corresponding mean field
ferromagnetic system.

Figure 4. |∆Smax(Bf )| for ∆B =
Bf between 1 T and 9 T. Filled circles
correspond to values calculated from the
isofield heat capacities reported in Ref.[9]
while the unfilled circles correspond to values
calculated for the corresponding mean field
ferromagnetic system. Note that the vertical
axis on the left of the figure shows values
for |∆Smax(Bf )| in units of J.mol−1.K−1.
The refrigeration capacity of CeAuGe (filled
squares) is also shown, together with the
refrigeration capacity of the mean field
ferromagnet (unfilled squares). The vertical
axis on the right of the figure shows values of
the refrigeration capacity in units of J.mol−1.
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