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Abstract. Decoherence indicates the process that a quantum system undergoes through
the interaction with its external environment. In a typical situation, a two-level system
(qubit) interacting with a Lorentzian type continuous distributions of field modes, one observes
exponential relaxation of the reduced density matrix. In this Jaynes-Cummings model scenario,
a special class of reservoirs is designed in order to control or delay the destructive effect of
the environment on qubit coherence. In this way, decoherence processes slower than the usual
exponential ones are obtained: over estimated long time scales, we demonstrate inverse power
law relaxations with powers decreasing continuously to unity according to the choice of the
particular reservoir. The designed reservoirs exhibit a photonic band gap coinciding with the
qubit transition frequency and are piecewise similar to those usually adopted in Quantum Optics,
i.e., sub-ohmic at low frequencies and inverse power laws at high frequencies. Initially, the
reservoir is assumed to be in the vacuum state and is unentangled from the qubit versing in a
generic state. The exact dynamics results to be described by series of Fox H-functions. The
simple form of the designed reservoir can be accessible experimentally.

1. Introduction
Decoherence indicates the process that a quantum system undergoes through the interaction
with its external environment. Great attention has been devoted to the dynamics of a qubit,
or, alternatively, a two-level system (TLS), coupled to its external environment [1, 2], given the
many applications in quantum optics, quantum information, atom-cavity interactions, molecular
dynamics, spectroscopy, and solid state physics. The environment is represented by a reservoir
of bosons [3], characterized by the corresponding spectral density function. The dependance
of decoherence on the explicit form of the spectral density function has been studied for sub-
ohmic, ohmic, super-ohmic and Lorentzian forms of the spectral density [4, 3], by adopting the
Jaynes-Cumming model [5].

In the following we consider the Jaynes-Cummings model and study a special class of
reservoirs piecewise similar to those usually adopted, e.g., sub-ohmic and Lorentzian ones. We
will show, that the specially designed reservoirs strongly suppress the decoherence. In particular,



we mention that the following analytical calculations concerning the exact dynamics of the model
are performed for a positive range of modes frequencies.

By choosing h̄ = 1, the Hamiltonian of the total system is HS + HE + HI , where the
Hamiltonian of the system, HS , the Hamiltonian of the environment HE and the interaction
Hamiltonian HI are given by

HS = ω0 σ+σ−, HE =
∞∑
k=1

ωk a
†
kak, HI =

∞∑
k=1

(
gk σ+ ⊗ ak + g∗k σ− ⊗ a

†
k

)
.

The rising and lowering operators, σ+ and σ−, respectively, act on the Hilbert space of the

qubit, defined through the equalities σ+ = σ†− = |1〉〈0|, while a†k and ak are the creation and
annihilation operators, respectively, acting on the Hilbert space of the k-th boson, fulfilling the

commutation rule
[
ak, a

′†
k

]
= δk,k′ for every k, k′ = 1, 2, 3, . . .. The parameters gk represent the

coupling between the transition |0〉 ↔ |1〉 and the k-th mode of the radiation field, while ω0 is
the qubit transition frequency.

The whole system is initially set in the following ket state:

|Ψ(0)〉 = (c0|0〉+ c1(0)|1〉)⊗ |0〉E , (1)

where |0〉E is the vacuum state of the environment. The exact time evolution is described by
the form

|Ψ(t)〉 = c0|0〉 ⊗ |0〉E + c1(t)|1〉 ⊗ |0〉E +
∞∑
k=1

bk(t)|0〉 ⊗ |k〉E , |k〉E = a†k|0〉E , k = 0, 1, 2, . . . .

The dynamics is easily studied in the interaction picture,

|Ψ(t)〉I = eı(HS+HE)t|Ψ(t)〉 = c0|0〉 ⊗ |0〉E + C1(t)|1〉 ⊗ |0〉E +
∞∑
k=1

Bk(t)|0〉 ⊗ |k〉E ,

where ı is the imaginary unity, C1(t) = eıω0t c1(t) and Bk(t) = eıωkt bk(t) for every k = 1, 2, . . ..
The Schrödinger equation gives the forms:

Ċ1(t) = −ı
∞∑
k=1

gk Bk(t) e
−ı(ωk−ω0)t, Ḃk(t) = −ı g∗k C1(t) e

ı(ωk−ω0)t,

leading to the following convoluted structure equation for the amplitude 〈1|⊗ E〈0||Ψ(t)〉I , labeled
as C1(t),

Ċ1(t) = − (f ∗ C1) (t), (2)

where f is the two-point correlation function of the reservoir of field modes,

f
(
t− t′

)
=
∞∑
k=1

|gk|2 e−ı(ωk−ω0)(t−t′).

For a continuous distribution of modes described by η (ω), the correlation function is expressed
through the spectral density function J (ω),

f (τ) =

∫ ∞
0

J (ω) e−ı(ω−ω0)τdω,

where J (ω) = η (ω) |g (ω)|2 and g (ω) is the frequency dependent coupling constant.



2. The decoherence process
The exact dynamics of the qubit is described by the time evolution of the reduced density matrix
obtained by tracing over the Hilbert space of the bosons,

ρ1,1(t) = 1− ρ0,0(t) = ρ1,1(0) |G(t)|2 , ρ1,0(t) = ρ∗0,1(t) = ρ1,0(0) e−ıω0tG(t). (3)

The function G(t), fulfilling the convolution equation

Ġ(t) = − (f ∗G) (t), G(0) = 1, (4)

drives the dynamics of the reduced density matrix describing the qubit: levels populations and
decoherence term. At this stage, we choose to study the exact dynamics of the reduced density
matrix of the qubit, interacting in rotating wave approximation with a reservoir of bosons
described by the continuous spectral density

Jα (ω) =
2A (ω − ω0)

α Θ (ω − ω0)

a2 + (ω − ω0)
2 , A > 0, a > 0, 1 > α > 0. (5)

This simple form exhibits a photonic band gap (PBG) edge coinciding with the qubit transition
frequency and has an absolute maximum Mα at the frequency Ωα,

Mα = Jα (Ωα) = Aαα/2aα−2 (2− α)1−α/2 , Ωα = ω0 + aα1/2 (2− α)1/2 .

The designed spectral densities are similar to those usually adopted, i.e. sub-ohmic at low
frequencies, ω ' ω0, and inverse power laws at high frequencies, ω � ω0, similar to the
Lorentzian one, though with different power,

Jα (ω) ∼ 2A/a2 (ω − ω0)
α , ω → ω+

0 , Jα (ω) ∼ 2Aωα−2, ω → +∞.

The exact dynamics of the reduced density matrix, driven by the function G(t), is described
through the Fox H-function, defined through a Mellin-Barnes type integral in the complex
domain,

Hm,n
p,q

[
z

∣∣∣∣∣ (a1, α1) , . . . , (ap, αp)
(b1, β1) , . . . , (bq, βq)

]
=

1

2πı

∫
C

Πm
j=1Γ (bj + βjs) Πn

m=1Γ (1− al − αls) z−s

Πp
l=n+1Γ (al + αls) Πq

j=m+1Γ (1− bj − βjs)
ds,

under the conditions that the poles of the Gamma functions in the dominator, do not coincide.
Also the empty products are interpreted as unity. The natural numbers m,n, p, q fulfill the
constraints: 0 ≤ m ≤ q, 0 ≤ n ≤ p, and αi, βj ∈ (0,+∞) for every i = 1, · · · , p and j = 1, · · · , q.
For the sake of shortness, we refer to [6] for details on the contour path C, the existence and
the properties of the Fox H-functions. The exact dynamics corresponding to the reservoir of
spectral density Jα (ω), Eq. (5), is driven by Gα(t) reading

Gα(t) =
∞∑
n=0

n∑
k=0

(−1)n zkα z
n−k
0 t3n−αk

k!(n− k)!

(
H1,1

1,2

[
z1t

2

∣∣∣∣∣ (−n, 1)
(0, 1) , (αk − 3n, 2)

]

− a2t2H1,1
1,2

[
z1t

2

∣∣∣∣∣ (−n, 1)
(0, 1) , (αk − 3n− 2, 2)

])
. (6)

A detailed demonstration is given in Ref. [7].
Particular cases give simplified solutions. For example, the condition A = A(?),

A(?) =
a3−α

π
cos (πα/2) , (7)



corresponding to z1 = 0, gives a power series solution,

G(?)
α (t) =

∞∑
n=0

n∑
k=0

(−1)n n! zkα z
n−k
0 t3n−αk

k! (n− k)! Γ (3n− αk + 1)

{
1− a2 Γ (3n− αk + 1)

Γ (3n− αk + 3)
t2
}
, 1 > α > 0. (8)

If the parameter α takes rational values, p/q, where p and q are distinct prime numbers such that
0 < p < q, the solution of Eq. (4) can be expressed as a modulation of exponential relaxations,

Gp/q(t) =

∫ ∞
0

dη

∫ ∞
0

dξΦp/q (η, ξ) e−ξt, (9)

where

Φp/q (η, ξ) =
n∑
l=1

ml∑
k=1

bl,k (ζl)

π
ηml−k sin

(
η ξ1/q sin (π/q)

)
eη(ζl−cos(π/q)ξ

1/q).

The rational functions bl,k (z) read

bl,k (z) =
dk−1/dzk−1 [(zq − a) (zq + a) (z − ζl)ml /Q (z)]

(ml − k)! (k − 1)!
,

for every l = 1, · · · , n, and k = 1, . . . ,ml. The complex numbers ζ1, · · · , ζn are the roots of the
polynomial

Q(z) = z3q + z1 z
q + zα z

p + z0 (10)

and ml is the multiplicity of ζl, for every l = 1, . . . , n, which means Q(z) = Πn
l=1 (z − ζl)ml and∑n

l=1ml = 3q.
The case α = 1/2 exhibits a simplified exact dynamics described by a finite sum of Eulerian

functions:

G1/2(t) =
1√
π

4∑
l=1

R (zl) zl e
z2l t Γ

(
1/2, z2l t

)
, (11)

where R(z) is a rational function,

R(z) =
(1− ı)

(
a1/2 + z

) (
ı a1/2 + z

)
2z
(
(1 + ı) a+ 3a1/2z + 2 (1− ı) z2

) , (12)

while the complex numbers z1, z2, z3 and z4, are the roots, distinct for every positive value of
both A and a, of the polynomial Q(z), given by the following form:

Q(z) = π
√

2/aA+ ı a z2 + (1 + ı) a1/2z3 + z4. (13)

For the sake of shortness, we refer to [8] for a detailed analysis of the case α = 1/2 and to [9] for
the analytical expressions of the roots. For α = 3/4 and A = a9/4 cos (3π/8) /π, the parameter
z1 vanishes and the roots ζ1, . . . , ζl can be evaluated analytically from the solutions of a quartic
equation. We do not report the expressions for the sake of shortness. In the remaining cases of
rational values of α, the roots of Q(z) must be evaluated numerically, once the numerical values
of both A and a are fixed. These details complete the necessary analysis of the function Gα(t),
driving the exact dynamics.



3. Inverse power laws
The theoretical analysis of the exact dynamics, performed above, leads to the following concrete
result: a time scale τ emerges such that, for t � τ , the function Gα(t) exhibits inverse power
law behavior described by the asymptotic form

Gα(t) ∼ −Dα t−1−α, t→ +∞, 1 > α > 0, (14)

where

Dα =
2 ı α a2(1−α)e−ıπα/2 csc (πα) sec2 (πα/2)

πAΓ (1− α)
. (15)

A simple choice is

τα = max

{
1,

∣∣∣∣ 3

z0

∣∣∣∣1/3 , ∣∣∣∣ 3 zαz0
∣∣∣∣1/α , 3 ∣∣∣∣z1z0

∣∣∣∣
}

; (16)

the proof is performed in Ref. [7].
Thus, over long timescales, t� τα, the qubit exact dynamics is described by the asymptotic

inverse power law relaxations:

ρ1,1(t) = 1− ρ0,0(t) ∼ ρ1,1(0) |Dα|2 t−2−2α, (17)

ρ1,0(t) = ρ∗0,1(t) ∼ ρ1,0(0)Dα e−ıω0t t−1−α, (18)

for every α ∈ (0, 1).

4. Conclusions
Starting from the initial condition (1) where the reservoir, in the vacuum state, and the qubit
are unentangled, the exact dynamics of the qubit interacting, in a rotating wave approximation
with a reservoir of bosons described by the spectral density (5) is described by a series (6) of
Fox H-functions. Over long timescales, t � τα, decoherence results in an inverse power law
relaxation proportional to t−1−α for every α ∈ (0, 1), according to the choice of the special
reservoir (5). The qubit ultimately collapses into the ground state.

An environment implementing the specially designed reservoir of modes can in principle be
realized with PBG media [10, 11]. An anisotropic model providing a PBG close to the 3D
photonic crystals [14], is discussed in Refs. [12] and [13]. The corresponding density of modes
reads

η (ω) ∝
√
ω − ωe Θ ((ω − ωe) /ωe) ,

where ωe is the band edge frequency. If the qubit transition frequency coincides with the edge of
the PBG, the low frequency behavior of the specially designed reservoir is recovered by assuming
that the couplings vary slowly at low frequencies, g (ω) ' g (ω0) for ω > ω0. Physically, the
modes relevant for the dynamics are the resonant ones, which means that the time evolution
mostly depends on the frequency behavior near the transition frequency of the system of interest
[15]. By placing a qubit in such a material and letting it interact with such a reservoir (in rotating
wave approximation), the described decoherence process can in principle emerge. The accuracy
of the model depends upon the high frequency behavior of the spectral density.

Also, a structured PBG is the N -period one dimensional lattice discussed in Ref. [16]. It
can reproduce a band gap by properly arranging the periodic sequence of unit lattice cells. The
density of modes is evaluated analytically as a function of the complex transmission coefficients of
each unit cell. Tunable 1D PBG microcavities can potentially supply a realization of structured
PBG [17, 18]. Their fabrication is achieved through advanced diffractive grating and photonic
crystals technologies. The action of such structured PBG environments on a qubit could be a
way of delaying the decoherence process with fundamental applications to Quantum Information
Processing Technologies.
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