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Abstract. Quantum Cryptography, one aspect of which is Quantum Key Distribution,
provides the only physically secure and proven method for the transmission of a secret key
between two distant parties, Alice and Bob. The goal of QKD is to guarantee that a possible
eavesdropper (Eve), with access to the communication channel is unable to obtain useful
information about the message. The Coherent-One-Way protocol is one of the most recent
practical QKD protocols. However, its unconditional security proof still remains unrealized.
We therefore present a necessary condition for the security of the COW protocol, and show
that Bob’s measurements are described by non-commuting POVM elements which satisfies this
condition.

1. Introduction

The Coherent-One-Way (COW) Quantum Key Distribution (QKD) protocol was first proposed
by Gisin et al. [1] and belongs to a class of the so-called distributed-phase-reference protocols
[2]. Currently no lower bound is known for the unconditional security of this protocol. The
existing tools for proving security of protocols against the most general attacks fail to apply to
this protocol in a straight forward way. While security proofs for some limited attacks exist, the
unconditional security proofs still remain unrealized. This paper presents an improvement in
this direction for the COW QKD protocol by presenting a necessary security condition for the
most general kind of attacks which is a step towards the unconditional security proof.

Various attacks have been studied for the COW QKD protocol. Security against intercept
and resend attacks based on unambiguous state discrimination has been shown [4] as well as
for general individual attacks [3]. Upper bounds for the error rates for the security of COW
protocol in the presence of large collective attacks as well as collective beam splitting attacks [3]
have also been derived [2]. Security against sequential attacks [5] based on unambiguous state
discrimination have also been shown [4]. The security against the most general attacks is still
elusive because the present tools for proving security of protocols in general cannot be adopted
in a straightforward way.

In spite of these proofs against limited examples of kinds of attacks, it still remains unclear
how the unconditional security proof can be realized. This is mainly because this class of
protocols use coherent sequences of signals which are not symmetric as opposed to qubits in
other classes of protocols. Again, these protocols move away from the symbol-per-symbol type
of coding [7]. The notation and the formalism to be used to develop a full unconditional security



proof is complicated for this class of protocols. Therefore, our goals in this paper is (i) to present
why the COW protocol is useful as a means of distributing a key, (ii) to show how the operation
of the COW protocol takes place in the absence of a detailed explanation of the protocol as
presented in the original literature [1, 6] and illustrate explicitly how the two parties extract
the key and (iii) to provide a notation and formalism that can be a necessary condition for the
security of COW QKD protocol.

2. Operation of the COW protocol

Alice prepares states |φ0〉 and |φ1〉 which represent logical states ‘0’ and ‘1’ respectively and decoy
states in each of k = 1, ..., N time intervals in a two-pulse sequence consisting of a non-empty
and an empty pulse:

|φ0〉k = |√µ〉2k−1|0〉2k,
|φ1〉k = |0〉2k−1|

√
µ〉2k,

|decoy〉k = |√µ〉2k−1|
√
µ〉2k, (1)

where 2k − 1 and 2k label the pulses in the pair. In the case of a small mean photon number,
the states |φ0〉k and |φ1〉k have a large overlap because of their vacuum component and also they
possess a phase coherence between any two non-empty pulses with a bit separation. The decoy
sequences are used to check for coherence in the data line and they are then going to be discarded
in the public discussion. Each logical bit of information is encoded in a sequence of two pulses.
The key is obtained by measuring the time-of-arrival of photons on the data line, detector DB .
The presence of the eavesdropper is checked interferometrically in a monitoring line by randomly
measuring the coherence between the successive non-empty pulses; bit sequences ‘1-0’ or decoy
sequences with the interferometer and detectors DM1 and DM2. If coherence is broken DM2

fires, and an error is recorded.
Bob uses a detector DB to unambiguously discriminate the non-orthogonal states |φ0〉k and

|φ1〉k. Since µ the average photon number is small Bob doesn’t always get a click. But sometimes
Bob gets a click in time interval k, and if the click corresponds to the first (second) pulse of the
pair, he records a zero (one).

3. COW protocol as P&M scheme

Alice prepares a random sequence of predefined non-orthogonal coherent states
⊗N

k=1 |ψ(sk)〉,
where each coherent state |ψ(sk)〉 = |φ0〉k or |φ1〉k is defined according to Equation 1. These
states are sent to Bob through an untrusted quantum channel. On the receiving side, Bob
performs a POVM on the signal he receives.

We divide each time slot k into two and label with integers j, such that j = 1, ..., 2N then,
according to Figure 1, the signal entering Bob’s interferometer in path ‘0’ after each time interval
j can be described in terms of the creation operators â0

†j and the outgoing paths, â3
†j , â7

†j and
â8

†j . In order to describe the signals entering Bob’s interferometer, we follow the same approach
used by A. Marais et al. [9], since these protocols belong to the same class. The total action of
the interferometer is derived to be

â0
†j → 1

2
√
2
(â7

†j − eiφ3 â8
†j + 2â3

†j + â7
†(j+1) + eiφ3 â8

†(j+1)), (2)

where the subscripts ‘0,. . .,8’ refer to paths as labelled in Figure 1, and φ1 + φ2 + φ3 = φ△t are
phase shifts associated with symmetric BS1, BS2, BS3 and the time delay, respectively.

When Alice prepares a |φ0〉, the input state is transformed to the output state as follows

|φ0〉k = |√µ〉(j−1)
0 |0〉j0

I→ |
√
µ

2
√
2
〉j−1
7 | − eiφ3

√
µ

2
√
2
〉j−1
8 |

√
µ√
2
〉j−1
3 |

√
µ

2
√
2
〉j7|eiφ3

√
µ

2
√
2
〉j8. (3)
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Figure 1. Schematic diagram of the QKD system for realizing the COW protocol. Key
extraction takes place along the data-line, with detector DB . Coherence between successive
non-empty pulses is checked interferometrically in the monitoring line with detectors DM1 and
DM2. BS1, BS2 and BS3 are considered to be symmetric beamsplitters, M1 and M2 are mirrors
and ‘0-8’ are paths along which the coherent pulses travel.

k = 6 k = 5 k = 4 k = 3 k = 2 k = 1

1 0 0 0 1 ← c

|µ〉12|µ〉11 |0〉10|µ〉9 |µ〉8|0〉7 |µ〉6|0〉5 |µ〉4|0〉3 |0〉2|µ〉1 ← b

decoy 1 0 0 0 1 ← a

Table 1. An example of the implementation of the COW protocol for k = 1, . . . , 6 where k
labels pairs; a is the logical bit recorded by Bob; b represents the states received at detector DB

and c is the bit value sent by Alice.

Here, Bob gets a click in DB which corresponds to a click in time slot j−1 with pclick=1−e−µ/8,
which is the first of the slots constituting interval k, and records a ‘0’. Since D7 and D8 click
with equal probability in slots j − 1 and j, there is no test for coherence from |0〉k above.

When Alice prepares a |φ1〉, the output state is of the form

|φ1〉k = |0〉(j−1)
0 |√µ〉j0

I→ |
√
µ√
2
〉j3|

√
µ

2
√
2
〉j7|

−√
µ

2
√
2
〉j8|

√
µ

2
√
2
〉(j+1)
7 |

√
µ

2
√
2
〉(j+1)
8 . (4)

Here, Bob gets a click in slot j in DB with pclick = 1 − e−µ/8 and records a ‘1’ for the time
interval k. Again, this follows for each of k = 1, ..., N intervals, Bob records a ‘0’(‘1’) when he
gets a click in slot j = 2k − 1(j = 2k).

In order to check for coherence in the data line, Alice prepares and sends decoy states to Bob.
A loss of coherence reveals the presence of an eavesdropper, which contributes to the error rate.
When Alice prepares a decoy state, the output is of the form

|decoy〉k = |√µ〉(j−1)|√µ〉j , (5)

but states formed from |φ1〉k|φ0〉k+1 can also be used for the channel estimation, i.e.,

|φ1〉k|φ0〉k+1 = |0〉(j−1)
0 |√µ〉j0|

√
µ〉(j+1)

0 |0〉(j+2)
0 . The state |√µ〉t0|

√
µ〉(t+1)

0 transforms the
interferometer as follows

|√µ〉t0|
√
µ〉(t+1)

0
I→ |
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8 . (6)



So, it can be seen that decoy states and |φ1〉k|φ0〉k+1 sequences do not contribute to the key
since here DB has a probability to click for both slots j in the pair k, so that Bob learns no
key bit. But, if DM2 clicks, this is an indication of a loss of coherence since if the consecutive
non-empty pulses have a constant relative phase, this detector has zero probability of clicking
as seen above.

Table 1 shows how the bits sent by Alice correspond to the sent states. To obtain the bit
value, Bob has to distinguish unambiguously between the two non-orthogonal states given in
Equation (1), that arrive at his detector. According to Table 1, Alice can also send decoy states.
Alternatively, checks for coherence can be done between two consecutive non-empty pulses for
example across the pair in k = 4 and k = 5. Based on these states Bob can record each respective
bit as shown in the example depicted by the same Table 1.

4. Bob’s Measurements

We exploit the mathematical convenience of POVM’s [10, 11] as a tool for describing Bob’s
measurement statistics. Since Bob has a probability of detecting one or more photons (a
click) or vacuum (no click) in each of his detectors in 2N time intervals, there are 26N possible
measurement outcomes corresponding to 26N POVM elements.

The projectors constituting Bob’s measurement in the time intervals j ∈ {1, ..., 2N} where j
is the superscript, are written as

G1 = |0〉〈0|,

G2 =

∞
∑

n=1

|n〉13〈n| ⊗ |0〉〈0|,

G3 = |0〉13〈0| ⊗
∞
∑

n=1

|n〉17〈n| ⊗ |0〉〈0|,

G4 = |0〉13〈0| ⊗ |0〉17〈0| ⊗
∞
∑

n=1

|n〉18〈n| ⊗ |0〉〈0|,

G5 = |0〉13〈0| ⊗ |0〉17〈0| ⊗ |0〉18〈0| ⊗
∞
∑

n=1

|n〉23〈n| ⊗ |0〉〈0|,
.

.

.

G26N =

∞
∑

n=1

|n〉〈n|. (7)

The Gi′s are projectors onto the basis of photon number states, |n〉. They represent all
possible outcomes for an implementation of the COW protocol with signals sent in 2N time
intervals. The projectors G1 and G26N represent an implementation of the protocol when Bob
measures vacuum and one or more photons respectively, in all the time intervals.

The action of Bob’s beamsplitter BS1, together with the interferometer are represented by
the operator U which maps the incoming state in path ‘0’ to the outgoing states in paths ‘3’,
‘7’ and ‘8’. Now the POVM’s Ej (where Ej = 4〈0|1〈0|U†GjU|0〉1|0〉4) are the operators that act
only on the states in path ‘0’. The expectation value with respect to the vacuum in path ‘1’
reduces the action of the operator U†GjU to the subspace of the states in path ‘0’, similar to
the partial trace.

The effect that corresponds to a click on Bob’s detector DB in j = 1; k = 1 and vacuum in



all other slots is given by

E2 = 1,4〈0|U†G2U|0〉1,4

=

∞
∑

n=1

1

2nn!
(â†10 )n|0〉〈0|(â10)n. (8)

Similarly a click in DB in j = 3; k = 2 and vacuum in all other slots becomes

E3 = 1,4〈0|U†G3U|0〉1,4

=
∞
∑

m=1

1

2mm!
(â†30 )m|0〉〈0|(â30)m. (9)

The commutator is then given by

[E2, E3] =

∞
∑

n=1

1

2nn!
(â†10 )n|0〉〈0|(â10)n

∞
∑

m=1

1

2mm!
(â†30 )m|0〉〈0|(â30)m

−
∞
∑

m=1

1

2mm!
(â†30 )m|0〉〈0|(â30)m

∞
∑

n=1

1

2nn!
(â†10 )n|0〉〈0|(â10)n

= 0, (10)

since 〈0|(â10)n(â30)m|0〉 = 0, i.e., the time intervals j = 1 and j = 3 belong to different Hilbert
spaces. So without clicks for checks of coherence, it means that there is no security. Therefore,
when we describe Bob’s measurements by commuting operators, an eavesdropper could measure
an observable which commutes with all of Bob’s measurements, thus remaining undetected.
Therefore, it is important that some of the POVM elements describing Bob’s measurements
must be non-commuting. This can be shown to be the case below. If we consider a click in DB

in time interval j = 2 and a click in DM1 in time interval j = 3, and vacuum everywhere else,
we have

E4 = 1,4〈0|U†G4U|0〉1,4

=
∞
∑

n=1

1

2nn!
(â†20 )n|0〉〈0|(â20)n,

E5 = 1,4〈0|U†G5U|0〉1,4

=
∞
∑

m=1

1

8mm!
(â†20 + â

†3
0 )m|0〉〈0|(â20 + â30)

m. (11)

The commutator is then given by

[E4, E5] =

∞
∑

n=1

1
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(â†20 )n|0〉〈0|(â20)n

∞
∑

m=1

1

8mm!
(â†20 + â
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m
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m
∞
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=
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(12)



=
∞
∑

n=1

n
∑

k=0

(

n

k

)

1

2n8nn!
{(â†20 )n|0〉〈0|(â20)n−k(â30)

k − (â†20 )n−k(â†30 )k|0〉〈0|(â20)n}

=
√
n!
√
k!
√

(n− k)!
(

|n〉20〈n− k|20〈k|30 − |n− k〉20|k〉30〈n|20
)

6= 0. (13)

Since the operators â
(†)2
0 , â

(†)3
0 act on different Hilbert spaces, the matrix elements do not

cancel. Therefore, it has been shown that there exist non-commuting POVM elements in Bob’s
measurements, hence a precondition for the security of the COW protocol has been shown to
be met.

5. Conclusion

From the above calculation, we can recognize that there exist non-commuting POVM elements
in Bob’s measurement in the P&M version of the COW protocol. Thus the COW protocol has
been proven to satisfy an important necessary condition for security and such a description is
an essential step in a potential proof for the most general kind of attacks..
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