Genetic algorithms in astronomy and astrophysics

Vinesh Rajpaul
Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University
of Cape Town, Private Bag X3, Rondebosch 7701, Republic of South Africa

E-mail: vinesh.rajpaul@uct.ac.za

Abstract. Genetic algorithms (GAs) emulate the process of biological evolution, in a
computational setting, in order to generate good solutions to difficult search and optimisation
problems. GA-based optimisers tend to be extremely robust and versatile compared to most
traditional techniques used to solve optimisation problems. This paper provides a very brief
introduction to GAs and outlines their utility in astronomy and astrophysics.

1. Introduction
Many interesting mathematical problems can be reformulated as global optimisation problems;
the solution of systems of algebraic or even differential equations, for example, can be cast
quite naturally in terms of optimisation. The same holds true for the all-important inverse
problems that are ubiquitous in the physical sciences, i.e. problems where one seeks to transform
experimental data into model parameters in order infer properties of the physical system being
studied (a simple example: choosing parameters to minimise a y2-statistic when fitting a Voigt-
profile to a spectral line).

The goal of a global optimisation problem is, given a so-called cost function® f : D C R" — R,
to find the point ©* € D such that:

Vi eD: f(Z) = f(T7); (1)
F(&*) is called the global minimum?. A local minimum, f(Z), is defined by the condition:
Z-7

Vi eD,30>0: <6= f(@) > (@) (2)

Whereas finding an arbitrary local minimum of a function is a relatively straightforward
task, especially if one has a good “first guess” — extremely efficient techniques exist to solve
such local optimisation problems — determining the global minimum of a function is a far more
challenging problem. Real-world cost functions tend to be nonlinear, discontinuous and/or
hugely multimodal, and there is no fool-proof approach to locating their global minima.

Most established approaches — whether deterministic, stochastic or (meta)heuristic — to
solving global optimisation problems yield excellent results on a limited class of problems,
but have drawbacks that tend to cripple them when faced with certain (reasonably) difficult

! Depending on the context, cost functions are also referred to as energy functions or objective functions.

2 Maximisation of f(Z) is, of course, equivalent to minimisation of ¢(&) := —f(&)

|

Population at T, (Best) Population at T,
01010101-++ }.
8 1

S 01010101+ o ~
01011101+ f--emmemr] 01011101+ | . 101--- 111
01000111 | 100101010+ | {01010 -~ 01011
00101010~ ot000111.-| ™ 10--- 1001010---

_/‘ (Worst) _/‘ _/'

Fitness-based ranking Recombination Copying errors

Figure 1. Schematic to illustrate the workings of a simple binary-coded genetic algorithm.
Each bit represents a gene; here the genes of high-fitness solutions are given lighter colours.

problems. For example, they might get stuck too easily in local minima, they might be thwarted
by discontinuous functions or they might be too slow to be of practical value when faced with
enormous search spaces [1].

Evolutionary algorithms, inspired by biological evolution, are metaheuristic optimisation
algorithms that tend to yield “good enough” results on a very wide range of (even extremely
difficult) optimisation problems. So-called genetic algorithms form one of the most successful
subsets, and certainly the most popular subset, of evolutionary algorithms.

2. Genetic algorithms: the basic idea

Genetic algorithms, or GAs for short, draw inspiration from population genetics (and, like
all evolutionary algorithms, from evolutionary biology in general) and they incorporate, in a
computational setting, notions such as natural selection/survival of the fittest, reproduction,
genetic recombination, inheritance and mutation. The first GA-based optimiser was proposed
in the mid-1970s [2], and since then a great variety of modifications and improvements to the
basic algorithm have been developed, including mechanisms without any biological analogues
3].

In spite of the rich variety of their potential incarnations, most GAs share a basic working
scheme: they start with a population of many candidate solutions (called individuals or
phenotypes), associate with each solution an encoded version of the phenotype (called a
chromosome, genotype or an individual’s genetic material) and also a measure of the solution’s
fitness (quality). This fitness function is often simply the additive inverse of the cost function
to be optimised. Then, by repeated application of “genetic operators” mainly at the genotypic
level, they cause the population as a whole to increase in phenotypic fitness, i.e. they cause the
solutions to evolve towards optimality.

A typical (though simplistic and by no means general or optimal) working scheme for a
genetic algorithm is as follows:

1. construct a random initial population of genotypes;

2. decode the genotypes and evaluate their phenotypic fitness; if the fittest phenotype matches
the user-defined target fitness (or other termination criterion), break, otherwise continue;

3. produce offspring by randomly selecting and recombining genetic material from the current
population, favouring individuals with high phenotypic fitness;

4. introduce, with some low probability, random changes (copying errors) into the genetic
material of the offspring;

5. replace low-fitness members of the old population with the offspring created in the previous
step, and goto step 2.

The selective recombination of genetic material exploits good solutions to build even better ones
(the unique mechanism of information transfer within the population of candidate solutions is
often cited as the distinguishing feature of GAs [3]), and the random mutations serve to inject
entirely new and potentially favourable material into the gene pool that could not be obtained
by recombining the genetic material of existing individuals.

Figure 1 illustrates the working scheme of a simple GA where the solutions are encoded as
binary strings®. It may be shown that given enough time, and subject to a few reasonable
assumptions, a GA will always converge to the global optimum of a cost function* [4, 6].

3. GAs: pros and cons
Relative to more conventional optimisation algorithms, GA-based optimisers offer a number of
striking advantages, some of which are outlined below.

Robustness. GA-based optimisers can handle — with aplomb — problems with multimodal
or low-contrast objective functions, multiple objectives and/or problems where the parameter
spaces have a very high dimensionality [1].

Simplicity. In order to solve a given optimisation problem, GAs require only a single,
unambiguous measure of the quality (fitness) of candidate solutions. They do not require,
for example, gradients or Hessian matrices, the computation of which might in some problems
be prohibitively difficult or impossible. Moreover it is a relatively easy task to develop a working
GA from scratch, and the ideas underpinning GAs are intuitively accessible.

Speed. Apart from the intrinsically high speed with which GAs tend to explore large
parameter spaces [4], they are embarrassingly parallel, meaning very little effort is required
to transform a serial implementation to a parallel implementation. Thus they are well-suited to
exploiting high-performance hardware (multi-core workstations, clusters, GPGPUs etc.).

Versatility. A single GA-based optimiser can be expected to yield “good enough” results on a
very wide class of problems — from something as simple, for example, as fitting a three-parameter
Gaussian to some data, to something as complex as minimising a Buckingham potential in a
molecular configuration problem with hundreds of parameters — and it is easy to incorporate
problem-specific knowledge (and constraints) into a GA-based solver. The widespread adoption
of GAs in fields such as engineering, manufacturing, chemistry, biology and economics bears
testimony to their great versatility [3].

To illustrate the great robustness and versatility of a typical GA, consider the following cost
function proposed by Charbonneau [7]:

f(z,y;n) = —[16x(1 — x)y(1 — y) sin(nnz) sin(mry)]2, (3)

where z,y € [0,1] and n € N. For n = 13, for example, it may be shown that f(x,y) has 169
local minima on its domain, only one of which is the global minimum?®; moreover, the minima
are separated by steep walls and there is little contrast between many of the minima (see figure
2).

3 Most early GAs encoded solutions as binary strings, both for the sake of simplicity and supposed theoretical
optimality; a large body of empirical evidence, however, indicates that in practice is is usually preferable to work
directly with floating-point representations of solutions! [1, 3, 4, 5]

4 Of course this knowledge is of little practical value; of more importance is the rate of convergence to the global
optimum, though unfortunately with GAs this rate is highly problem-dependent and difficult to estimate a priori.
5 In general, f(z,y;n) will have n? local minima; for n odd, there will be a unique global minimum, and for n
even, 4 of the local minima will be global minima.

z=—f(z,y;5)

-10 |

10 Solution cost: |f(x, y;13) — f(z*,y*:13)] \|\
= = =Dist. to opt.: \/(75—) = (y—y*)?
"""" Machine epsilon: 2752
; 1075}
10° 10" 10° 10° 10
Function evaluations
Figure 2. Surface plot of the function Figure 3. Performance of a GA-based optimiser
f(z,y;n) defined by equation 3 for the applied to the n = 13 case of f(x,y;n); the thick
case n = 5. In this case there are n? = 25 lines denote median performance in 10000 trials,
local optima on the domain z,y € [0, 1]. and the thin lines, upper and lower 3o limits.

Figure 3 illustrates how a GA-based optimiser fared on the (rather challenging) n = 13
problem: in 10000 trials, the algorithm converged to the global minimum every single time,
with the minimum location determined to a median accuracy of about one part in a billion
after only ~ 10% function evaluations (or a fraction of a second on a modern workstation).
For comparison, a blind random search would require ~ 10'® evaluations to guarantee similar
accuracy!

Although this performance is impressive in its own right, it is worth emphasising that it took
mere minutes to adapt an existing GA-based optimiser® to solve this problem, and that the
algorithm control parameters were not optimised in any way for this new problem.

An obvious question arises: why do GAs work as well as they do? This topic is far beyond
the scope of this survey paper but suffice it to say that a universally-accepted explanation has
not yet been developed. Holland’s famous Schema Theorem has long been touted as providing
an explanation for GAs’ success [2], although more recently it has become apparent that this
theorem provides insight only into the workings of simplistic GAs; and even then, it is not clear
whether the assumptions underlying the theorem are tenable [8, 9].

Unsurprisingly, in spite of all their attractive features, GAs also have their share of
disadvantages (more or less in accordance with Wolpert and Macready’s famous “no free lunch”
theorem [10]). GAs might be called “Jacks of all problems, but masters of none”: optimising a
GA’s performance on a given problem is often difficult or impossible, and in order to achieve near-
optimal performance it is usually necessary to hybridise a GA with problem-specific heuristics.
For example, they tend to be better at locating than at fine-tuning solutions: once a GA is in the
vicinity of a global optimum, it is usually a good idea to let a local optimiser take over [1]. GAs
can be inefficient on simple problems where the computational expense of applying the genetic
operators outweighs that of evaluating the function to be optimised; conversely, on problems

5 This GA, coded by the author, used floating-point encoding, dynamically-adjusted mutation rates and
tournament-style selection of reproducing partners.

where each cost function evaluation is extremely expensive (each evaluation might require a long
simulation to be run!), a GA-based forward modelling approach can be impractical.

Finally the (currently) limited theoretical understanding of GAs is regarded by some, quite
understandably, as a major drawback and this might explain their relatively slow uptake in the
physical sciences [7].

4. Applications: astronomy and astrophysics

This section presents a sample of the numerous and diverse applications that genetic algorithms
have found in astronomy and astrophysics. For brevity’s sake, only one or two short but
representative examples have been drawn from different subfields. Astrophysical dynamics.
Wahde and Donner developed a method for reliably determining the orbital parameters of
interacting galaxies and applied their method to both artificial and real data [11]. Their method
is based on a GA that searches very efficiently through the large space of possible orbits; indeed,
the authors argue that GAs are ideally suited for investigations of tidally interacting galaxies,
where large multimodal search spaces must be searched in order to constrain a large number of
model parameters. Canto et al devised an interesting variant of the canonical GA which they
applied successfully to various problems, including the challenging task of finding the orbital
parameters planets orbiting 55 Cancri, based on radial velocity measurements of the aforesaid
stellar system [12].

Physical and observational cosmology. Although Monte Carlo methods seem to predominate
in cosmology, GAs have already found a number of applications in the field. To mention just a
couple: Nesseris and Shafieloo used GAs to reconstruct the expansion history of the universe in
a model-independent manner and thence, in conjunction with the so-called Om statistic, they
derived a null test on the cosmological constant model ACDM [13]; via GAs, Allanach et al
were able to answer some important questions related to the discrimination of SUSY-breaking
models, and in particular to quantify the measurements necessary to tell different SUSY-breaking
scenarios apart [14]; and Bogdanos and Nesseris used GAs to analyse Type Ia SNe data and
to extract model-independent constraints on the evolution of the dark energy equation of state
[15]. The latter authors note that as a non-parametric method, GAs provide a convenient model-
independent platform for cosmological data analysis that can minimise bias due to premature
choice of e.g. a dark energy model.

Gravitational lens modelling. Gravitational microlensing is an ideal technique for probing
the galactic population of faint or dark objects such as substellar objects, stellar remnants,
MACHOSs and exoplanets. Though very successful, theoretical microlensing models tend to be
complex and their associated inverse modelling problems are notoriously difficult. The author
of this paper has recently been developing GAs to speed up this difficult modelling, with a view
to being able to model ongoing events approximately in real time (i.e. on a timescale of minutes
rather than weeks or months!) and thereby to facilitate better-informed observations and thus
more useful observational data. Results of this work are expected to be published in early 2012.
As another example, Liesenborgs et al presented a GA-based, non-parametric technique for
inferring the projected lensing-mass distributions in strongly lensed systems [16].

Stellar spectrum fitting. Performing fits to stellar spectra is a nontrivial but important
undertaking; from fitted models one can infer a veritable multitude of stellar properties. Baier et
al were able to combine radiative transfer codes with a GA to produce an automated procedure
for fitting the dust spectra of AGB stars. Their GA-based routine dramatically improved extant
fits made with more traditional methods and provided a quantitative platform from which to
compare different models [17]. In a similar vein, Mokiem et al used a parallelised GA as the
basis for an autonomous fitter of spectra of massive stars with stellar winds [18].

Stellar structure modelling. Metcalfe and Charbonneau implemented a highly-parallelised and
distributed GA to determine the globally optimal parameters for stellar models. The efficient,

parallel exploration of parameter space made possible by the GA-based optimisation led to some
important results in the field of white dwarf astroseismology, including the unexpected resolution
of a then-puzzling discrepancy between stellar evolution model and astroseismic inferences of
He-layer masses in DBV white dwarfs [19].

Telescope scheduling. Autonomous telescope scheduling is a difficult task that requires
dynamic adjustment of numerous observational constraints whilst trying to ensure the efficient
achievement of many different scientific objectives. Kubanek developed an easy-to-implement
yet robust approach to a robotic telescope scheduling problem, based on a GA that seeks out
Pareto-optimal solutions (telescope schedules) [20].

5. Conclusions
This paper introduced genetic algorithms, mentioned some of their strengths (and weaknesses)
and finally illustrated their utility in astronomy and astrophysics. For those who would like
to learn more about GAs (or other evolutionary algorithms), there are many fine books on
the subject: to mention just a couple, Michalewicz’s book [4] gives an excellent introduction
with a theoretical leaning, and Haupt’s book provides an equally good though more “hands-on”
treatment [3]. Goldberg’s seminal tutorial-style book [21], one of the most widely-cited works
in all of computer science, also serves as an outstanding reference.

The author of this paper would welcome correspondence from anyone who would like to
discuss evolutionary algorithms, perhaps with a view to applying them in their own work.

Acknowledgments
The author wishes to thank the University of Cape Town and the National Research Foundation
for the provision of financial support.

References
[1] Charbonneau P 2002 An Introduction to Genetic Algorithms for Numerical Optimization (Boulder, CO:
National Center for Atmospheric Research)
[2] Holland J H 1975 Adaptation in Natural and Artificial Systems (Ann Arbor, MI: The University of Michigan
Press)
[3] Haupt R L and Haupt S E 2004 Practical Genetic Algorithms (Toronto: Wiley-Interscience)
[4] Michalewicz Z 1996 Genetic Algoritms + Data Structures = Evolution Programs (Berlin, AL: Springer)
[5] Wright A H 1991 Foundations of Genetic Algorithms ed Rawlins G J (San Mateo, CA: Morgan Kaufmann)
pp 205-18
[6] Eiben A E, Aarts E H L and van Hee K M 1991 Proc. 1st Workshop on Parallel Problem Solving from Nature
(London: Springer-Verlag) pp 4-12
[7] Charbonneau P 1995 ApJS 101 309-34
[8] Syswerda G 1989 Proc. 8rd Int. Conf. on Genetic Algorithms ed Schaffer D J (San Mateo, California: Morgan
Kaufmann Publishers, Inc.) pp 2-9
[9] Wright A H, Vose M D and Rowe J E 2003 Proc. 2008 Int. Conf. on Genetic and Evolutionary Computation:
Part II (Berlin, Heidelberg: Springer-Verlag) pp 1505-17
[10] Wolpert D H and Macready W G 1997 IEEE Trans. Evol. Comp. 1 67-82
[11] Wahde M and Donner K J 2001 A&A 379 115-24
[12] Canté J, Curiel S and Martinez-Gémez E 2009 A&A 501 1259-68
[13] Nesseris S and Shafieloo A 2010 MNRAS 408 1879-85
[14] Allanach B C, Grellscheid D and Quevedo F 2004 J. High Energy Phys. 7 JHEP07(2004)069
[15] Bogdanos C and Nesseris S 2009 J. Cosmol. Astropart. Phys. 5 JCAP05(2009)006
[16] Liesenborgs J, De Rijcke S and Dejonghe H 2006 MNRAS 367 1209-16
[17] Baier A, Kerschbaum F and Lebzelter T 2010 A&A 516 A45
[18] Mokiem M R, de Koter A, Puls J, Herrero A, Najarro F and Villamariz M R 2005 A&A 441 711-33
[19] Metcalfe T S, Nather R E and Winget D E 2000 ApJ 545 974-81
[20] Kubanek P 2008 Genetic Algorithm for Robotic Telescope Scheduling (Granada: University of Granada Press)
[21] Goldberg D E 1989 Genetic Algorithms in Search, Optimization and Machine Learning 1st ed (Boston, MA:
Addison-Wesley Longman Publishing Co., Inc.)

