

Contribution ID: 270

Type: Poster Presentation

Synthesis and photoluminescence studies of (Ba_{1x}Sr_x)Al₂O₄:Eu<sup>2 prepared by combustion method

Wednesday, 13 July 2011 17:00 (2 hours)

Sarium-substituted phosphor powders of (Ba_{1-x}Sr_x)Al₂O₄:Eu<sup>Al₂O₄:Eu<sup>Al<sub>Al₂O₄Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub

2+</sup> ;Nd³⁺ composition were prepared by combustion method at an initiating temperature of 500⁰C, using urea as reducer. The powders were then annealed at higher temperatures of 800⁰C and 1000⁰C for 3 hours. Their crystallinity and phase were characterized by x-ray diffraction (XRD). The x-ray diffraction shows that the crystallinity of (Ba_{1-x}Sr_xAl₂O<sub>+ at (x=0) greatly improved after annealing at the higher temperature of 1000⁰C and shows the hexagonal structure that closely correspond with the JCPDS data (PDF17-0306). The morphology of the (Ba_{1-x}Sr_x)Al₂0₄:Eu²⁺;Nd³⁺ composition were investigated using Scanning Electron Microscopy (SEM). The effect of varying the Ba/Sr concentration on the thermoluminescence (TL) glow curves was investigated using the Thermoluminescence Reader (Integral-Pc Based) Nucleonix TL 1009I. Photoluminescence (PL) properties of all phosphor samples were investigated by measuring their emission spectra using a 325nm He-Cd laser. For the as-prepared phosphor samples, the sample with x=0 (BaAl₂O₄:Eu²⁺;Nd³⁺showed a much higher intensity compared to both the sample with x=1 (SrAl₂O₄: Eu²⁺: Nd³⁺are intensity in the sample with x=1 (SrAl₂O₄: Eu²⁺: Nd³⁺are intensity in the sample with x=1 (SrAl₂O₄: Eu²⁺: Nd³⁺are intensity in the sample with x=1 (SrAl₂₊O₄: Eu²⁺: Nd³⁺are intensity in the sample with x=1 (SrAl₂₊O₄: Eu²⁺: Nd³⁺are intensity in the sample with x=1 (SrAl₂₊O₄O³⁺are intensity in the sample with x=1 (SrAl₂₊O₄O³⁺are intensity in the sample with x=1 (SrAl<sub>2+</sup>are intensity in the sample with x=1 (SrAl₂₊O³⁺are intensity in the sample with x=1 (SrAl₂₊O³⁺are intensity in the sample with x=1 (SrAl<sub>2+</sup>are intensity in the sample with x=1 (SrAl₂₊O³⁺are intensity in the sample with x=1 (SrAl₂₊O³⁺are intensity in the sample with x=1 (SrAl<sub>2+</sup>are intensity in the sample with x=1 (SrAl₂₊are intensity in the sample withe mixed composition of the two. (BaAl₂O₄:Eu²⁺;Nd³⁺(x=0) and SrAl₂O₄:Eu²⁺;Nd³⁺ (x=1)showed a broad emission at 505nm and 522nm respectively while the mixed composition showed two peaks at 447nm and 517nm. The broad emission peaks attributed to 4f⁶5d¹-4f⁷ transitions of Eu²⁺ were obtained. Their phosphorescence was investigated by using the fluorescence Cary eclipse spectrophotometer coupled with a xenon lamp. Phosphorescence show higher luminescence for (Ba_{1-x}Sr_xAl<sub>2</sub (x=0).

Level (Hons, MSc,
 PhD, other)?

MSc

Consider for a student
 award (Yes / No)?

Yes

Would you like to
> submit a short paper
> for the Conference
> Proceedings (Yes / No)?

Yes

Primary author: Ms LEPHOTO, Mantwa Annah (University of The Free State)

Co-authors: Dr MOTHUDI, Bakang Moses (UNISA); Dr BEM, Daniel Barasa (University of The Free State); Prof. SWART, Hendrik (University of The Free State); Prof. NTWAEABORWA, Odireleng Martin (University of The Free State)

Presenter: Ms LEPHOTO, Mantwa Annah (University of The Free State)

Session Classification: Poster1

Track Classification: Track A - Condensed Matter Physics and Material Science