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Abstract. A harmonious formulation of the inverse-square laws for fields shows that elemental 
sources are rightfully represented as scalars for both gravitational and electric fields, but as 
vectors for magnetic fields. This permits an effective simple illustration that, unlike the 
gravitational or electric flux, the magnetic flux out of any closed surface is zero irrespective of 
whether the enclosed magnetic source is dipolar or non-dipolar. Then Gauss’ law can be re-
stated as: Out of any enclosing surface, if the enclosed source is a scalar quantity, the net flux 
is equal to the source itself, whereas if the enclosed source is any vector quantity, the net flux 
is the scalar zero, and thus independent of both the source and the enclosing surface. 

1.  Elemental scalar and vector charges 
A harmonized representation of elemental sources of fields and the inverse-square laws [1] are used to 
express elemental fluxes of gravitational, electric and magnetic fields over an elemental surface. When 
distributed over a space of volume v , the elemental scalar and vector sources of fields, that is a mass 

md   or an electric scalar charge qd   and a magnetic vector charge Qd  which are physical attributes 
of materials, can be expressed in terms of their gravitational scalar m  , electric scalar e   and 
magnetic vector J  00 ˆ zJ  volume densities as  

vdmd m        (1a) 
vdqd  e      (1b) 

vdd  J0Q      (1c) 
where J  zJ ˆ  is the electric current volume density in the z -direction. We show that the scalar or 
vector nature of the sources determines what the net elemental outward flux would be. Then by 
superposition the results are generalized to any distributed source. 

2.  Net elemental flux out of a spherical or cylindrical surface 
If a particle characterized by the elemental sources md  , qd   and Qd  is located at the origin O  of 
coordinates (see figures 1 and 2), then its free space elemental gravitational gd0 , electric ED dd 0  
and magnetic HB dd 0  flux densities can be similarly expressed as [1]: 



 
 
 
 
 
 

 
Figure 1. A spherical surface centrally enclosing a scalar ( md   or qd  ) or a vector ( Qd ) source. 
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where the outward radial vector zR zφρR ˆ0ˆˆˆ   , in spherical and cylindrical coordinates, is from 

the source point to the field point. Here 14 0 G  and 100
2
0 c  relate the gravitativity 

1229
0 N m kg 10193.1  , permittivity 12212

0 N m C 10854.8   and permeability 
1227

0 N m  Wb104    in vacuum to the universal gravitational constant G  and the speed 0c  
of light. Since md   is a positive scalar quantity, gd0  and its elemental gravitational flux are always 
outward. This is consistent with the Ed0  of a positive qd  .  

On a spherical surface of area Ra  (see figure 1), the elemental area vector is  

 ˆ  sinˆ 2
RR dddRd aRR  a     (3) 

so that the respective elemental gravitational, electric and magnetic fluxes are  
,0ˆˆ

00  RR dgddd a RRg a     (4a) 

,0ˆˆ  RR dDddd aRRD a     (4b) 

,0ˆˆ  RR dBddd aRφB a     (4c) 
as gd0  and Dd  are collinear with R̂ , but Bd  is normal to it and to Qd . Ultimately this is simply 
because md   and qd   are scalars while Qd  is a vector.  

For magnetic flux, a closed cylindrical surface axially concentric with the enclosed elemental 
magnetic vector charge Qd  (as in figure 2) is equally suitable for evaluating the net outward flux. 
This composite closed surface has three open surfaces which are typified by the elemental area vectors  
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Figure 2. A cylindrical surface axially concentric with an enclosed magnetic vector charge Qd . 
 

11 ˆˆ adddd zz  a      (5) 

22 ˆˆ addzdd ρρ  a     (6) 

33 ˆˆ adddd zz  a     (7) 
Since each of these elemental area vectors is normal to Bd , that is, at any point on the surface the 
vector Bd  lies within the surface, the corresponding elemental magnetic fluxes vanish: 

0ˆˆ 11  dBddd azφB a     (8) 
0ˆˆ 22  dBddd aρφB a     (9) 

0ˆˆ 33  dBddd azφB a     (10) 
Evidently, each of the elemental sources cited above is a single non-dipolar source [2  4]. From 

equations (4a) to (4c), their individual net outward gravitational, electric and magnetic fluxes through 
the enclosing spherical surface are 

mdddgd R  
sphere

0g  ˆˆ aRR      (11a) 

qdddDd R  
sphere

e  ˆˆ aRR     (11b) 
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Similarly a combined integration of equations (8) to (10) yields the net magnetic flux from the closed 
cylinder 
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3.  Net flux out of any enclosing surface 
Equations (11a) to (11d) mean that, as R  is arbitrary, any elemental source can be regarded as being at 
the centre of an arbitrary spherical or cylindrical surface that fully encloses it. Then the net flux from 
such a closed surface is given by these respective equations. That is, only one closed surface out of a 
family of concentric closed surfaces contributes to the net flux. 

Now, any surface enclosing a source can be built up from a suitable combination of spherical 
surfaces, a number of which are centred at elemental sources in the distribution. Then, since each 
family of concentric spheres contributes to the flux in accordance with equations (11a) to (11c), the 
superposition principle yields the net gravitational  
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fluxes out of any spherical surface enclosing any related net source 0m , 0q  and 0Q , that is 
any non-dipolar source, paired or not [2, 4]. These results show that the size, shape or position of the 
enclosure does not affect the net flux out of it. As vd   and ad  are independent, the order of 
integration was reversed to recover the usual Gaussian formats for the fluxes. 

The above treatise clearly demands a more suitable interpretation of Gauss’ law for any source 
type. Out of any enclosing surface, if the enclosed source is a scalar quantity, the net outward flux is 
equal to the source itself, whereas if the source is a vector quantity, the net flux is equal to the scalar 
zero, and thus independent of both the source and the enclosing surface.  
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