
SAIP2015

Contribution ID: 283

Type: Poster Presentation

High resolution X-ray diffraction and photoluminescence of InAs_{1-x}Sb_x/GaSb

Tuesday, 30 June 2015 16:10 (1h 50m)

Abstract content
 (Max 300 words)
Formatting &
Special chars

InAs_{1-x}Sb_x has the lowest energy band gap among all the III-V semiconductors and has thus received a great deal of attention as an important material to be incorporated into infrared optoelectronic devices. Photodetectors containing this ternary have potential to reach wavelengths up to 9 μ m. To achieve this, high quality thin films with few defects and impurities are required. One of the key issues in using InAs_{1-x}Sb_x in the device architecture (particularly for wavelengths greater than 4 μ m) is the lack of available lattice-matched substrates. To date, the best performing InAsSb-containing devices are lattice matched to GaSb substrates, with a 9% antimony solid content. (i.e. InAs_{0.91}Sb_{0.09}).

This paper focuses on the deposition of high quality thin films of InAs_{0.91}Sb_{0.09} (between 2 µm and 4 µm thick) on 2" GaSb substrate. The material deposition is performed in a metal organic chemical vapour deposition (MOCVD) system. The process begins by the deposition of a thin (nanometer thickness range) low temperature buffer layer of either GaSb followed by the deposition of strain free InAsSb. High resolution X-ray diffraction (HRXRD) is used to precisely determine the composition of the ternary alloy as well as to investigate the uniformity across the entire wafer. Photoluminescence (PL), using a Fourier-transform infrared (FTIR) spectrometer, is employed to further explore the material quality and purity. Preliminary measurements indicate consistent thickness and compositional uniformity of the InAsSb layers.

Apply to be
 considered for a student
 award (Yes / No)?

No

Level for award
 (Hons, MSc,
 PhD, N/A)?

PhD

Main supervisor (name and email)
and his / her institution

Prof JR Botha Reinhardt.Botha@nmmu.ac.za NMMU

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

No

Please indicate whether
this abstract may be
published online
(Yes / No)

Yes

Primary author: Mr DOBSON, Stephen (NMMU)

Co-authors: Prof. BOTHA, Johannes Reinhardt (NMMU); Prof. WAGENER, Magnus (NMMU); Dr WAGENER, Viera (Nelson Mandela Metropolitan University)

Presenter: Mr DOBSON, Stephen (NMMU)

Session Classification: Poster1

Track Classification: Track A - Division for Physics of Condensed Matter and Materials