SAIP2015

Contribution ID: 325

Type: Poster Presentation

Prediction of Structures and Energy stabilities of VO₂ nanoparticles.

Tuesday, 30 June 2015 16:10 (1h 50m)

Abstract content
 (Max 300 words)
Formatting &
Special chars

We have employed a Genetic Algorithm (GA) Hybrid technique as implemented in GULP code to predict the ground-state energies of various small V_nO_{2n} nanoparticles (n = 1-15). The search procedures were based on the GA techniques and the Interatomic Potential (IP) model, and did not refer to any known VO₂ polymorphs. All stable structures were optimized using Density Functional Theory (DFT) employing Dmol code. More importantly, ground state VO₂ nanoparticles (clusters n = 1-3), were identified. The results showed that for n = 1 (VO₂), the energies of both the core and shell candidate structures were found to be similar. As n increases, the symmetry changed from D2h to C2v and the structures became more stable. Interestingly, their atomic arrangements were also observed to be similar to those of TiO₂. Furthermore, the O-V-O bond angles for both the core and shell models (111.20) compare well with those for titania (111.40).

Apply to be
 considered for a student
 award (Yes / No)?

No

Level for award
 (Hons, MSc,
 PhD, N/A)?

PhD

Main supervisor (name and email)
and his / her institution

Phuti Ngoepe phuti.ngoepe@ul.ac.za University of Limpopo

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

No

Please indicate whether
this abstract may be
published online
(Yes / No)

No

Primary author: Mr NETSIANDA, Makondelele (University of Limpopo)Presenter: Mr NETSIANDA, Makondelele (University of Limpopo)Session Classification: Poster1

Track Classification: Track A - Division for Physics of Condensed Matter and Materials