Prediction of Structures and Energy stabilities of VO₂ nanoparticles.

Tuesday, 30 June 2015 16:10 (1h 50m)

Abstract

Max 300 words)
Formatting \&
Special chars

We have employed a Genetic Algorithm (GA) Hybrid technique as implemented in GULP code to predict the ground-state energies of various small $V<$ sub $>n</$ sub $>0<$ sub $>2 n</$ sub> nanoparticles $(n=1-15$). The search procedures were based on the GA techniques and the Interatomic Potential (IP) model, and did not refer to any known VO₂ polymorphs. All stable structures were optimized using Density Functional Theory (DFT) employing Dmol code. More importantly, ground state $\mathrm{VO}<$ sub $>2</$ sub> nanoparticles (clusters $\mathrm{n}=$ $1-3)$, were identified. The results showed that for $\mathrm{n}=1$ ($\mathrm{VO}<\mathrm{sub}>2</ \mathrm{sub}>$), the energies of both the core and shell candidate structures were found to be similar. As n increases, the symmetry changed from D2h to C2v and the structures became more stable. Interestingly, their atomic arrangements were also observed to be similar to those of $\mathrm{TiO}<$ sub>2</sub>. Furthermore, the $\mathrm{O}-\mathrm{V}-\mathrm{O}$ bond angles for both the core and shell models (111.2o) compare well with those for titania (111.40).

Apply to be
 considered for a student
 \ award (Yes / No)?
No

Level for award
\ (Hons, MSc,
 \ PhD, N/A)?
PhD

Main supervisor (name and email)
and his / her institution
Phuti Ngoepe phuti.ngoepe@ul.ac.za University of Limpopo

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

No

Please indicate whether
this abstract may be
published online
(Yes / No)

Primary author: Mr NETSIANDA, Makondelele (University of Limpopo)
Presenter: Mr NETSIANDA, Makondelele (University of Limpopo)
Session Classification: Poster1

Track Classification: Track A - Division for Physics of Condensed Matter and Materials

