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(1) Introduction

• Metal: interacting particle system consisting of 

lattice ions and valence electrons.

model assumptions results
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plane waves

Landau 
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gas
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• Ferromagnetism is a consequence of strong 

electron correlations.

• Possible methods: density functional theory 

DFT or model calculations.



(2) The Model

• Tight binding approximation → Hubbard 

Hamiltonian.
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• The Hubbard model explains ferromagnetism on 

the basis of a spin dependent band shift between 

the ↑ and ↓ density of states below a critical 

temperature �� 	.



band magnetism: the exchange 

interaction is responsible for a spin 

dependent band shift.



• The Hubbard model is a non-trivial many body problem 
and is in general not exactly solvable. Interesting 
solutions obtained so far include

• - The Mermin Wagner theorem rules out ferromagnetic 
order at finite temperatures for �	 � 2.

• -For small band occupations � only a paramagnetic 

solution �↑ � �↓ �	
�

�
	� is obtained.

• -In the strong coupling limit �	 ≫ � a saturated 
ferromagnetic solution is expected for large band 
occupations �.

• -In the zero band width limit no ferromagnetic 
solutions are observed.



(3) Charge Density Waves

• Due to charge screening the electron density 

in a simple metal becomes space vector 

dependent.



• According to the Thomas-Fermi approximation the eigenenergies can be written in the form
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• They are obtained from the roots of the dielectric function
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• The Coulomb potential of the test charge is screened so that the electrons are only subjected to it if 
their distance # is smaller than the screening range λ56 	which is determined from the Poisson 
equation for the Coulomb potential yielding
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• Furthermore, inserting ε	 	� � 	
;:	2:

�	<∗ into Eq (2) above yields the plasmon frequency
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• and the plasmon energies

• �?	 % � 0 � 	;	ω?	 % � 0 � 	;	
*-	9:

1-	<∗ (3)

• 4	 B	 � 	�?	 % � 25	 B
• Plasmons are collective excitations of the free electron gas.



(4) Spin Density Waves

• Diagonal susceptibility within the Hubbard model
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• The poles of Eq (4) represent the famous Stoner criterion
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• Transverse susceptibility within the Stoner model
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• The poles of Eq (5) are identical to the spin flip excitation 
energies
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• They describe transitions between the two 

spin bands



• yielding the exchange splitting

• Δ�9R � 2	�	Q (6)

• The exchange splitting is temperature 

dependent.



Evaluation

• The particle numbers �↑ and �↓ are calculated 

from the free Bloch density of states of the 

non-interacting particle system, i.e.
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• model density of states:



(5) Results

magnetization .



• The plot Q"�$ describes the phase transition in a 
qualitatively correct manner. However, in the vicinity of 
�� deviations from the expected results are observed.

• Evaluating the expression for the magnetization in the 
limit �	 → 	�� yields the critical behavior
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• The critical exponent of the order parameter in Eq (8) is 
typical for molecular field approximations.



magnetization 



• The Curie temperature �� depends on the 

strength of the ferromagnetic coupling. In the 

strong coupling limit one obtains
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�

\
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• Eq ( 9) qualitatively agrees with experimental 

results.



(6) Conclusions and Outlook

• Using the Hubbard Hamiltonian the exchange 
splitting between the ↑ and ↓ density of states is 
calculated within an RPA approximation.

• The magnetization Q	"�, �$ describes the phase 
transition in a qualitatively correct manner.

• Ferromagnetic solutions are only obtained for 
band fillings �	 L 0.5.

• The dependence of the Curie temperature �� 	 on 
the intraatomic Coulomb interaction �
qualitatively agrees with experimental results.



• Alternatively the free Bloch density of states of Eq (7) 
above could also be obtained from a � � 0^ band 
structure calculation of the paramagnetic metal. In the 
paramagnetic phase the Stoner energies turn out to be 
identical to renormalized Bloch energies of the form
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• that include all interactions not covered by the 
Hubbard Hamiltonian.  With these more realistic input 
parameters Eq (7) may then be reevaluated to obtain 
improved results for the magnetization Q	"�, �$.


