
SAIP2015

Contribution ID: 188

Type: Oral Presentation

Simultaneous substitution of Ba, Mn and Co into Fe₃O₄ spinel structure: Magnetic and electrochemical sensing properties of the synthesized nanoparticles

Wednesday, 1 July 2015 14:00 (20 minutes)

Abstract content
 (Max 300 words)
Formatting &
Special chars

Simultaneous substitution of Ba, Mn and Co was successfully achieved by glycol thermal route. The phase formation was confirmed by X-ray powder diffraction technique. The microstrain is investigated based on the Williamson-Hall plot. Crystallinity, shape and size of the nanoparticles were investigated by high resolution transmission electron microscopy and high resolution scanning electron microscopy. Brunauer-Emmet-Teller measurements revealed that the sample has high surface area of 116 m²/g. The sample displays mesoporous character based on the Barrett-Joyner-Halenda test. The magnetic properties as a function of temperature were performed on mini-cryogen free VTI system in the temperature range 4 K to 300 K. The magnetization increased from 66.5 ± 0.3 emu/g to 84.4 ± 0.5 emu/g from 300 K to 4 K respectively. The sample was found to become magnetically harder at low temperature since the coercivity increases from 0.009 ± 0.003 T to 1.01 ± 0.004 T for the temperatures 300 K and 4 K respectively. The temperature dependence of the coercive field followed Kneller's law, whilst a modified Bloch's law was suitable in describing the magnetization as a function of measuring temperature. The electrochemical properties of Ba_{1/3}Mn_{1/3}Co_{1/3}Fe₂O<sub> nanoparticles were also investigated. Cyclic voltammograms of ferricyanide oxidation showed that the synthesized nanoparticles modified electrode exhibited improved electrochemical activity as compared to the bare electrode. These high-performance electrodes are expected to lead to the development of a novel group of electrochemical sensors.

Apply to be
 considered for a student
 award (Yes / No)?

Yes

Level for award
 (Hons, MSc,
 PhD, N/A)?

PhD

Main supervisor (name and email)
and his / her institution

Thomas Moyo (Moyo@ukzn.ac.za)/School of Chemistry and Physics, Westville campus, University of KwaZulu-Natal.

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Please indicate whether
this abstract may be
published online
(Yes / No)

No

Primary author: Mr OSMAN, Nadir (University of KwaZulu-Natal)

Co-authors: Dr THAPLIYAL, Neeta (ukzn); Dr KARPOORMATH, Rajshekhar (ukzn); Dr MOYO, Thomas (University of KwaZulu-Natal)

Presenter: Mr OSMAN, Nadir (University of KwaZulu-Natal)

Session Classification: DPCMM

Track Classification: Track A - Division for Physics of Condensed Matter and Materials