Faculty of Science

MULTI-DIMENSIONAL ANALYSIS OF PRECIPITATES IN A 12% Cr STEEL

<u>G. Deyzel^{1,2} and J.E. Westraadt²</u>

¹Physics Department, ²Centre for HRTEM, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa

60th SAIP Conference 2015 - Boardwalk Hotel Port Elizabeth (30 June – 3 July 2015)

Background

- Creep-strength-enhanced ferritic (CSEF) steels are widely used in fossil fuel plants such as Eskom (South African public electricity utility).
- Creep is a material aging process whereby a material loses its strength and ductility.
- Power plant steels operate under high loads and at elevated temperatures which increases the rate of creep and ultimately time to failure of the component.
- It is therefore very important to replace the component before creep damage deteriorates the material to the point where failure is eminent.

Background

- CSEF steels is strengthened by $M_{23}C_6$ (M = Cr, Fe) and MX (M = V, X = C, N) precipitates in the tempered martensite matrix.
- The parameters of these precipitates (e.g. size, shape, number density and composition) play an important role in the creep strengthening of the material.
- Precipitate strengthening quantified by the Orowan back-stress:
 - threshold stress required to cause plastic flow if particle strong enough so that not cut by dislocation.

Figure 1: Schematic diagram of evolution of microstructure (*Holzer*). [Note: all images relate to same length scale]

Background - Welding on creep aged steels

Figure 2: Regions in weldment (Francis et al.)

Motivation

- Precipitate parameters usually measured from images taken from thin-foils using the TEM.
- Thin-foil methods suffer from two drawbacks:
 - 1) Magnetic sample interferes with the objective lens leads to a reduction in the spatial resolution.
 - 2) Thin-foil (thickness ~ 20-200nm) will section the $M_{23}C_6$ precipitates reducing the measured precipitate size.
- Measured stereological projection of the precipitate can be corrected by several methods in order to obtain the true precipitate size distribution.
- In the case of MX precipitates no stereological correction required – assume that they are so small that they will not be sectioned.

Motivation

- and the state
- By preparing extraction replicas of the surface, the difficulties associated with the thin-foil samples are avoided.
- 2D elemental maps are only projections of the 3D precipitates
 cannot sufficiently provide the precipitate shape and spatial distribution.
- Transmission electron tomography technique capable of representing the 3D structure of the precipitates.
- If combined with EFTEM generate 3D chemical maps, which overcomes the limitations of the 2D maps.

Objectives

- and the state
- To use 3D EFTEM elemental maps obtained from the extraction replica to qualitatively determine:
 - the precipitate shape and
 - spatial distribution.
- To compare these results to the precipitate parameters that were previously obtained from the 2D maps.

Experimental - Sampling

- Material: X20 (12% Cr) stainless steel (X20CrMoV11-1).
- Used for the high temperature pressure pipework (HTPP) at Eskom's coal fired power plants.
- New and service exposed (550 °C, 208 kh) X20 steel.
- Specimens of FGHAZ obtain by physical simulation using a Gleeble 3800.
- TEM thin-foils were prepared by PIPS Ar⁺ milling.
- Extraction replicas were prepared by the bulk replication technique.

Figure 3: Main steam pipes used at Eskom coal fired power plants.

Experimental - Analysis

- TEM analysis performed using:
 - JEM JEOL2100 (LaB₆),
 - fitted with a GATAN Quantum GIF.
- 2D EFTEM elemental maps were acquired for Cr and V using the three window method.
- Tomographic tilt-series of EFTEM maps acquired:
 - from -60° to 60° in 1° increments,
 - using the GATAN Digital Micrograph (DM) software with a EFTEM Tomography plug-in.
- Alignment, filtering and reconstruction of the EFTEM map tilt series was performed using DM.
- Additional image processing was achieved with Amira and ImageJ.

Experimental - Analysis

11

Table 1: Summary of formulae usedto calculate precipitate parameters.

Figure 4: BF-TEM images of damaged extraction replica specimen.

ION-MILLED

Figure 5: EFTEM colour map of the M₂₃C₆ (green) and MX (red) precipitates in the (a) extraction replica and (b) ion-milled samples prepared from new FGHAZ specimen.

Process of determining precipitate parameters

Table 2: Measured precipitate parameters and calculated Orowan back-stress values for FGHAZ of new and damaged X20 steel.

		Sample	Measured d _{mean} [ECD] (nm)	Corrected d _{mean} (nm)	f _V (%)	λ (nm)	σ _{or} (MPa)	# Precipitates
M ₂₃ C ₆	NEW	ТЕМ	156 ± 5	188 ± 14	4.23	260 ± 20	147 ± 11	358
		Replica	168 ± 3			309 ± 6	123 ± 2	1182
	DAMAGED	ТЕМ	166 ± 9	198 ± 12	2.69	402 ± 51	99 ± 33	224
		Replica	173 ± 4			487 ± 71	83 ± 12	1092
MX	NEW	ТЕМ	56 ± 3		0.56	431 ± 96	92 ± 20	279
		Replica	45 ± 1			345 ± 45	111 ± 14	2368
	DAMAGED	ТЕМ	56 ± 5		0.33	641 ± 147	64 ± 15	182
		Replica	60 ± 3			743 ± 155	52 ± 11	814

Figure 6: Measurement of precipitate size from EFTEM elemental map of $M_{23}C_6$ precipitates for a new FGHAZ replica specimen, using ImageJ.

Figure 7: Thickness map of the ion-milled TEM sample obtained from the elastic/inelastic log ratio to determine the mean free path of the electrons.

Figure 8: M₂₃C₆ precipitate diameter distribution plots for new simulated FGHAZ specimen.

Figure 9: Video illustrating 3D structure of $M_{23}C_6$ (green) and MX (red) precipitates for the extraction replica prepared from the new FGHAZ specimen.

Figure 10: 3D composite image of $M_{23}C_6$ (green) and MX (red) precipitates for the extraction replica prepared from the FGHAZ specimen.

Conclusions

The simulated FGHAZ of the aged material had the lowest calculated Orowan back-stress. This result is consistent with the known mechanisms of coarsening of the M₂₃C₆ precipitates and dissolution of MX precipitates during creep aging of CSEF steels.

Advantages of the replica sample preparation:

- identification of inhomogeneous distribution of precipitates;
- observation of precipitate shape;
- larger sampling area ($\pm 4 \times 10^6 \mu m^2$, TEM = $\pm 1.8 \times 10^3 \mu m^2$);
- improved image resolution.
- By using the two sample preparation techniques together, the limitations of each separate sampling technique can be minimised to obtain the precipitate parameters with improved accuracy.

Conclusions

- > The quantitative results from 2D EFTEM confirm the qualitative results from 3D EFTEM tomography in both cases it was found that the $M_{23}C_6$ precipitates are much larger than the MX precipitates.
- It can be concluded that with 3D EFTEM tomography:
 - The projection limitation is overcome so that it is possible to determine the true spatial distribution and size of the precipitates in the extraction replica.
 - In combination with the conventional 2D maps there is the potential to obtain quantitative information about the precipitates in a 12% Cr steel with greater accuracy.

Future Work

- Optimization and hence quantitative analysis of the 3D reconstruction.
- To determine to what extend the extraction is a true replica of the steel sample.

Acknowledgments

- Financial assistance from the NRF is gratefully acknowledged.
- Dr. J.E. Westraadt (CHRTEM) guidance and TEM work
- Prof. J.H. Neethling (CHRTEM) guidance and support
- N. Mfuma (CHRTEM) sample preparation
- ESKOM supply of samples

T. Rasiawan (UCT) – supply and simulation of samples

Faculty of Science

Discovering for tomorrow

THANK YOU

References

- Bhadeshia, H.K.D.H. (2001) ISIJ Int. <u>41</u>, 626.
- Holzer, I. (2010) PhD. Dissertation, Graz University of Technology, Austria, 22.
- Sonderegger, B. (2006) Ultramicroscopy <u>106</u>, 941.
- Mitchell, D.R.G. and Sulaiman, S. (2009) Mater. Charact. <u>56</u>, 49.
- Messaoudi, C. et al. (2013) Microsc. Microanal. <u>19</u>, 1669.
- Jin-Phillipp, N.Y., Kock, C.T. and Van Aken, P.A. (2009) Proc. Microsc. Conf., Graz, Austria <u>1</u>, 73.
- I Holzer, PhD. Dissertation, Graz University of Technology (2010), p. 22.
- B Sonderegger, Ultramicroscopy **106** (2006), p. 941 950.
- B Sonderegger et al, Computer Methods in Materials Science 11 (2011), p.148-156.
- A Aghajani et al, Acta Materialia 57 (2009), p. 5093-5106.

