SAIP2015

Contribution ID: 272

Type: Oral Presentation

Beyond Mixing-Length Theory: an advanced approach to treating convective energy transfer in stars.

Tuesday, 30 June 2015 10:20 (20 minutes)

Abstract content
 (Max 300 words)
Formatting &
Special chars

The heat transfer rates predicted by the Full Spectrum of Turbulence (FST) model of stellar convection differ significantly from those predicted by Mixing Length Theory. The difference is due to the inclusion of the entire range of scales of turbulence rather than the single scale assumption of MLT. Inclusion of these scales leads to a new governing equation for the calculation of the convective heat flux in the stellar interior. We discuss the key ingredients of the FST model and comment on its application to stars.

Apply to be
 considered for a student
 award (Yes / No)?

Yes

Level for award
 (Hons, MSc,
 PhD, N/A)?

PhD

Main supervisor (name and email)
and his / her institution

Dr. Fabio Frescura ; Fabio.Frescura@wits.ac.za ; University of the Witwatersrand.

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Please indicate whether
this abstract may be
published online
(Yes / No)

Yes

Primary author: Mr MOONSAMY, Sashin (University of the Witwatersrand)

Co-authors: Dr ENGELBRECHT, Chris (University of Johannesburg); Dr FRESCURA, Fabio (University of the Witwatersrand)

Presenter: Mr MOONSAMY, Sashin (University of the Witwatersrand)

Session Classification: Astro

Track Classification: Track D1 - Astrophysics